Two genes co-operate to cause aggressive leukaemia

The two genes are often present in mutated form in acute leukaemias, but the mutations rarely occur together. Scientists have previously believed that the two mutated genes have exactly the same function: each one alone will lead to increased activity of a carcinogenic protein known as “RAS”. This protein, in turn, causes blood cells to proliferate more rapidly.

“This is a surprising discovery that suggests that there is a mechanism behind the development of cancer that has not yet been recognised. It opens the way for new methods of fighting blood cancer cells with NF1 mutations”, says Associate professor Martin Bergö, who leads the research at the Wallenberg Laboratory at the Sahlgrenska Academy.

One of the genes codes for the RAS protein, which is a known accelerator for cell proliferation in several forms of cancer. The other gene codes for a protein known as “NF1”, which is known to reduce the activity of the RAS protein.

The research group at the Sahlgrenska Academy has previously used two different types of mouse models, one of them with the RAS-mutation and the other with the NF1-mutation. Both mutations individually cause a slowly progressing leukaemia to develop in the mice. The research group has now combined the two animal models and shown that a very aggressive form of acute leukaemia develops in mice with mutations in both genes.

“The corresponding increase in the RAS signalling cannot explain the severe increase in disease aggressiveness, and this means that the NF1 protein may play a different role in the development of the leukaemia than we originally thought and may not involve the RAS protein at all. The discovery opens the possibility of developing new treatments for patients who have mutations in NF1”, says Martin Bergö.

The research group is now collaborating with another research group at the Sahlgrenska Academy, investigating the role that the NF1 protein plays, and how these new results can lead to new treatment strategies.

LEUKAEMIA
Around 900 people in Sweden are diagnosed with leukaemia each year. Leukaemias are diseases of the blood that involve the formation of large quantities of white blood cells. The leukaemia cells often invade the liver, spleen and lymph nodes, leading to a seriously impaired immune defence. Considerable progress has been made in research into leukaemia during recent decades, both with respect to treatment and classification, but the fundamental processes remain partially unknown.
For more information, contact:
Associate professor: Martin Bergö, telephone: +46 31 342 7858, martin.bergo@wlab.se.se
Journal: Blood
Title of the article: NF1 deficiency co-operates with oncogenic K-RAS to induced acute myeloid leukemia in mice

Authors: Briony A. Cutts, Anna-Karin M. Sjögren, Karin M.E. Andersson, Annika M. Wahlström, Christin Karlsson, Birgitta Swolin and Martin O. Bergö

Press information: elin.lindstrom@sahlgrenska.gu.se
+46 (0)31 7863869
Elin Lindström Claessen

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors