Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genes behind obesity mapped in large-scale study

An international research team has identified seven new gene loci linked to obesity. Researchers were also able to show that the genetic mechanisms that cause extreme obesity are similar to those that cause milder forms of overweight and obesity.

A total of more than 260,000 people were included in the study of the links between genes and obesity, which will be published in the latest issue of Nature Genetics. The aim of the study was to identify new genes that increase the risk of obesity, but also to compare genetic factors that cause extreme obesity with those that are linked to rest of the BMI range.

"We know from experience that genetic factors are important for the emergence of both milder and more extreme forms of obesity, but how much overlap there is between genes that are involved in extreme obesity and normal or slightly elevated BMI has not been examined systematically previously," says Erik Ingelsson, Professor at the Department of Medical Sciences and Science for Life Laboratory, Uppsala University, who coordinated the study.

The researchers studied gene variants, or positions in the genetic code that differ between individuals. Many million such commonly occurring inherited differences are scattered throughout the genome. In the recently published study, researchers identified loci (regions of the genome) that are linked to obesity through examining the relationship between different body measurements and 2.8 million gene variants in 168,267 participants.

They then carried out a targeted follow-up of the 273 gene variants with the strongest link to various body measurements in another 109,703 people. Through this extensive gene mapping they were able to confirm the majority of the gene loci which were already linked to various body measurements, as well as identifying four new gene loci linked to height, and seven loci linked to overweight and obesity. They could also demonstrate a great overlap of genetic structure and distribution of gene variants between extreme forms of obesity and milder forms.

"This knowledge is important because it increases the biological understanding of the origins of extreme obesity as well as milder forms of obesity. Our results suggest that extremely obese individuals have a greater number of gene variants that increase the risk of obesity, rather than completely different genes being involved. In the long term, our findings may lead to new ways of preventing and treating obesity, which is one of the greatest global public health problems of our age," says Erik Ingelsson.

The study is also important because it indicates that conclusions from genetic studies of the most extreme cases of a certain characteristic, such as extreme obesity, may be generalized to the rest of the population. This is important knowledge for the design of future studies.

The present study was carried out within the framework of the research consortium GIANT (Genetic Investigation of ANthropometrical Traits) which has gathered over one hundred partial studies and more than 300 co-authors. The study was coordinated by Erik Ingelsson, who is one of the leaders of the consortium, together with researchers from several leading research institutes in the United Kingdom and the United States.

Erik Ingelsson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>