Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can our genes be making us fat?

23.03.2012
While high-fat foods are thought to be of universal appeal, there is actually a lot of variation in the extent to which people like and consume fat.

A new study in the March issue of the Journal of Food Science, published by the Institute of Food Technologists, reported that two specific genes (TAS2R38–a bitter taste receptor and CD36–a possible fat receptor), may play a role in some people's ability to taste and enjoy dietary fat. By understanding the role of these two genes, food scientists may be able to help people who have trouble controlling how much fat they eat.

Most food scientists acknowledge the texture of fat plays a big role in how fat is perceived in the mouth. For example, ice cream is typically "rich, smooth and creamy." And certain fats, scientists have determined, can be detected by smell. Only recently have food scientists explored that most fats have a taste too. Researchers are now investigating the gene (CD360) that is responsible for detecting the taste of fats (fatty acids) in the mouth.

In the recent Journal of Food Science study, investigators focused on one ethnic group to limit genetic variation that could reduce the ability to detect associations with the gene of interest. They determined the fat preferences and CD36 status of more than 300 African-American adults. The investigators from the New York Obesity Research Center identified a genetic variant present in 21 percent of the African-Americans that was associated with higher preferences for added fats and oils (e.g. salad dressings, cooking oils, etc). They also found study participants with this genetic variance ranked Italian salad dressings creamier than those who have other genotypes.

The other gene explored by these investigators, TAS2R38, is the receptor for bitter taste compounds. About 70 percent of U.S. adults and children are "tasters" of these compounds, while the remaining 30 percent are "nontasters." Results indicate that nontasters of these compounds tend to be poor at discriminating fat in foods; therefore individuals who can't detect fat's presence may consume higher fat foods to compensate. This is in part due to the fact that nontasters have fewer taste buds than tasters. While researchers recognize that the cause of obesity is multifaceted, they continue to examine the role of these genotypes in weight management.

Genetic testing within the food industry may not be too far off. Once studies like these are more fully developed, there may be a role for genotyping study participants when it comes to testing a new product. For example, a company wanting to test out a dressing may include people with different genes relating to fat perception in order to get a more accurate opinion. In addition, the food industry will be able to create different kinds of foods for certain populations.

Two additional articles relating to fat perception are included in the March issue of the Journal of Food Science.

"Mechanisms for Sensing Fat in Food in the Mouth"
Edmund T. Rolls, Oxford Centre for Computational Neuroscience, Oxford, UK
"Are Free Fatty Acids Effective Taste Stimuli in Humans?"
Robin M. Tucker, and Richard D. Mattes, Dept. of Nutrition Science, Purdue University

About IFT

The Institute of Food Technologists (IFT) is a nonprofit scientific society. Our individual members are professionals engaged in food science, food technology, and related professions in industry, academia, and government. IFT's mission is to advance the science of food, and our long-range vision is to ensure a safe and abundant food supply, contributing to healthier people everywhere.

For more than 70 years, the IFT has been unlocking the potential of the food science community by creating a dynamic global forum where members from more than 100 countries can share, learn, and grow. We champion the use of sound science across the food value chain through the exchange of knowledge, by providing education, and by furthering the advancement of the profession. IFT has offices in Chicago, Illinois and Washington, D.C. For more information, please visit ift.org.

Stephanie Callahan | EurekAlert!
Further information:
http://www.ift.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>