Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can our genes be making us fat?

23.03.2012
While high-fat foods are thought to be of universal appeal, there is actually a lot of variation in the extent to which people like and consume fat.

A new study in the March issue of the Journal of Food Science, published by the Institute of Food Technologists, reported that two specific genes (TAS2R38–a bitter taste receptor and CD36–a possible fat receptor), may play a role in some people's ability to taste and enjoy dietary fat. By understanding the role of these two genes, food scientists may be able to help people who have trouble controlling how much fat they eat.

Most food scientists acknowledge the texture of fat plays a big role in how fat is perceived in the mouth. For example, ice cream is typically "rich, smooth and creamy." And certain fats, scientists have determined, can be detected by smell. Only recently have food scientists explored that most fats have a taste too. Researchers are now investigating the gene (CD360) that is responsible for detecting the taste of fats (fatty acids) in the mouth.

In the recent Journal of Food Science study, investigators focused on one ethnic group to limit genetic variation that could reduce the ability to detect associations with the gene of interest. They determined the fat preferences and CD36 status of more than 300 African-American adults. The investigators from the New York Obesity Research Center identified a genetic variant present in 21 percent of the African-Americans that was associated with higher preferences for added fats and oils (e.g. salad dressings, cooking oils, etc). They also found study participants with this genetic variance ranked Italian salad dressings creamier than those who have other genotypes.

The other gene explored by these investigators, TAS2R38, is the receptor for bitter taste compounds. About 70 percent of U.S. adults and children are "tasters" of these compounds, while the remaining 30 percent are "nontasters." Results indicate that nontasters of these compounds tend to be poor at discriminating fat in foods; therefore individuals who can't detect fat's presence may consume higher fat foods to compensate. This is in part due to the fact that nontasters have fewer taste buds than tasters. While researchers recognize that the cause of obesity is multifaceted, they continue to examine the role of these genotypes in weight management.

Genetic testing within the food industry may not be too far off. Once studies like these are more fully developed, there may be a role for genotyping study participants when it comes to testing a new product. For example, a company wanting to test out a dressing may include people with different genes relating to fat perception in order to get a more accurate opinion. In addition, the food industry will be able to create different kinds of foods for certain populations.

Two additional articles relating to fat perception are included in the March issue of the Journal of Food Science.

"Mechanisms for Sensing Fat in Food in the Mouth"
Edmund T. Rolls, Oxford Centre for Computational Neuroscience, Oxford, UK
"Are Free Fatty Acids Effective Taste Stimuli in Humans?"
Robin M. Tucker, and Richard D. Mattes, Dept. of Nutrition Science, Purdue University

About IFT

The Institute of Food Technologists (IFT) is a nonprofit scientific society. Our individual members are professionals engaged in food science, food technology, and related professions in industry, academia, and government. IFT's mission is to advance the science of food, and our long-range vision is to ensure a safe and abundant food supply, contributing to healthier people everywhere.

For more than 70 years, the IFT has been unlocking the potential of the food science community by creating a dynamic global forum where members from more than 100 countries can share, learn, and grow. We champion the use of sound science across the food value chain through the exchange of knowledge, by providing education, and by furthering the advancement of the profession. IFT has offices in Chicago, Illinois and Washington, D.C. For more information, please visit ift.org.

Stephanie Callahan | EurekAlert!
Further information:
http://www.ift.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>