Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can our genes be making us fat?

23.03.2012
While high-fat foods are thought to be of universal appeal, there is actually a lot of variation in the extent to which people like and consume fat.

A new study in the March issue of the Journal of Food Science, published by the Institute of Food Technologists, reported that two specific genes (TAS2R38–a bitter taste receptor and CD36–a possible fat receptor), may play a role in some people's ability to taste and enjoy dietary fat. By understanding the role of these two genes, food scientists may be able to help people who have trouble controlling how much fat they eat.

Most food scientists acknowledge the texture of fat plays a big role in how fat is perceived in the mouth. For example, ice cream is typically "rich, smooth and creamy." And certain fats, scientists have determined, can be detected by smell. Only recently have food scientists explored that most fats have a taste too. Researchers are now investigating the gene (CD360) that is responsible for detecting the taste of fats (fatty acids) in the mouth.

In the recent Journal of Food Science study, investigators focused on one ethnic group to limit genetic variation that could reduce the ability to detect associations with the gene of interest. They determined the fat preferences and CD36 status of more than 300 African-American adults. The investigators from the New York Obesity Research Center identified a genetic variant present in 21 percent of the African-Americans that was associated with higher preferences for added fats and oils (e.g. salad dressings, cooking oils, etc). They also found study participants with this genetic variance ranked Italian salad dressings creamier than those who have other genotypes.

The other gene explored by these investigators, TAS2R38, is the receptor for bitter taste compounds. About 70 percent of U.S. adults and children are "tasters" of these compounds, while the remaining 30 percent are "nontasters." Results indicate that nontasters of these compounds tend to be poor at discriminating fat in foods; therefore individuals who can't detect fat's presence may consume higher fat foods to compensate. This is in part due to the fact that nontasters have fewer taste buds than tasters. While researchers recognize that the cause of obesity is multifaceted, they continue to examine the role of these genotypes in weight management.

Genetic testing within the food industry may not be too far off. Once studies like these are more fully developed, there may be a role for genotyping study participants when it comes to testing a new product. For example, a company wanting to test out a dressing may include people with different genes relating to fat perception in order to get a more accurate opinion. In addition, the food industry will be able to create different kinds of foods for certain populations.

Two additional articles relating to fat perception are included in the March issue of the Journal of Food Science.

"Mechanisms for Sensing Fat in Food in the Mouth"
Edmund T. Rolls, Oxford Centre for Computational Neuroscience, Oxford, UK
"Are Free Fatty Acids Effective Taste Stimuli in Humans?"
Robin M. Tucker, and Richard D. Mattes, Dept. of Nutrition Science, Purdue University

About IFT

The Institute of Food Technologists (IFT) is a nonprofit scientific society. Our individual members are professionals engaged in food science, food technology, and related professions in industry, academia, and government. IFT's mission is to advance the science of food, and our long-range vision is to ensure a safe and abundant food supply, contributing to healthier people everywhere.

For more than 70 years, the IFT has been unlocking the potential of the food science community by creating a dynamic global forum where members from more than 100 countries can share, learn, and grow. We champion the use of sound science across the food value chain through the exchange of knowledge, by providing education, and by furthering the advancement of the profession. IFT has offices in Chicago, Illinois and Washington, D.C. For more information, please visit ift.org.

Stephanie Callahan | EurekAlert!
Further information:
http://www.ift.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>