Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes linked to cancer could be easier to detect with liquid lasers

01.02.2012
Using a liquid laser, University of Michigan researchers have developed a better way to detect the slight genetic mutations that might predispose a person to a particular type of cancer or other diseases.
Their results are published in the current edition of the German journal Angewandte Chemie.

This work could advance understanding of the genetic basis of diseases. It also has applications in personalized medicine, which aims to target drugs and other therapies to individual patients based on a thorough knowledge of their genetic information.

The researchers say their technique works much better than the current approach, which uses fluorescent dye and other biological molecules to find and bind to mutated DNA strands. When a patrol molecule catches one of these rogues, it emits a fluorescent beacon. This might sound like a solid system, but it's not perfect. The patrol molecules tend to bind to healthy DNA as well, giving off a background glow that is only slightly dimmer than a positive signal.

"Sometimes, we can fail to see the difference," said Xudong Fan, an associate professor in the Department of Biomedical Engineering and principal investigator on the project. "If you cannot see the difference in signals, you could misdiagnose. The patient may have the mutated gene, but you wouldn't detect it."

Researchers have developed a highly sensitive technique based on laser emission for differentiating a target DNA strand from strands that contain single base mismatches. Laser emission is used to amplify the small difference in signals that are generated by the different strands after they bind with a molecular beacon. The conversion is similar to analog-to-digital. Image: Christopher BurkeIn the conventional fluorescence technique, the signal from mutated DNA might be only a few tenths of a percent higher than the background noise. With Fan's new approach it's hundreds of times brighter.

"We found a clever way to amplify the intrinsic difference in the signals," Fan said.

He did it with a bit of backtracking.

Liquid lasers, discovered in the late '60s, amplify light by passing it through a dye, rather than a crystal, as solid-state lasers do. Fan, who works at the intersection of biomedical engineering and photonics, has been developing them for the past five years. In his unique set-up, the signal is amplified in a glass capillary called a "ring resonator cavity."

Last year, Fan and his research group found that they could employ DNA (the blueprints for life that reside in all cells) to modulate a liquid laser, or turn it on and off. His group is one of just a few in the world to accomplish this, Fan said. At the time, they didn't have a practical application in mind. Then they had an epiphany.

"We thought, 'Let's look at the laser output. Can we see what's causing the different outputs and use it to detect differences in the DNA?'" Fan said. "I had an intuition, and it turns out the output difference was huge."

The journal editors named this a "hot paper" that "advances knowledge in a rapidly evolving field of high current interest."

The paper is titled "Distinguishing DNA by Analog-to-Digital-like Conversion by Using Optofluidic Lasers." The research was funded by the National Science Foundation. The first author is Yuze Sun, a doctoral student in the Department of Biomedical Engineering. The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.engin.umich.edu

Further reports about: Biomedical DNA DNA strand Gates Foundation genes laser system

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>