Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes behind increasingly common form of cancer identified

12.10.2009
Researchers at the University of Gothenburg, Sweden, have identified two genes believed to play a role in the development of endometrial cancer. These results may eventually lead to better diagnosis and treatment of this increasingly common form of cancer.

Researchers at the University of Gothenburg, Sweden, have identified two genes believed to play a role in the development of endometrial cancer. These results may eventually lead to better diagnosis and treatment of this increasingly common form of cancer.

Endometrial cancer, also known as uterine or womb cancer, is the most common malignant cancer of the female reproductive system in the Western World. The number of cases being detected has increased markedly, as has mortality. Around 1 300 women in Sweden are diagnosed with endometrial cancer each year, equivalent to 6 per cent of all cases of cancer in women.

Genes identified

Cancer is caused by genetic changes - mutations - in cells' DNA disrupting the normal regulation of growth. In her study, researcher Carola Hedberg from the Department of Cell and Molecular Biology at the University of Gothenburg has identified the genes involved in the development of endometrial cancer.

Rat models

Her research focuses on genetic analyses of rats, and more specifically their chromosome 10. This chromosome is interesting because it is prone to deletion - the loss of genetic material - in connection with tumour formation. Hedberg has been able to show that one or more growth-suppressing genes are normally to be found in the middle of the chromosome where this loss of genetic material is greatest. The deletion of these genes eliminates their growth-regulating functions, and this is believed to contribute to the development of endometrial cancer.

New treatment

Information about specific genetic changes in rats as a model can be transposed to the equivalent form of cancer in humans. A knowledge of the genes involved in a particular form of cancer may therefore contribute to cancer care in the longer term through better diagnostic tools and new forms of treatment and preventive care. In more in-depth studies, Hedberg and her colleagues have identified two particular genes, Skip and Myo1c, which are believed to play a key role in the development of endometrial cancer.

The thesis Novel Tumor Suppressor Gene Candidates in Experimental Endometrial Carcinoma - From Cytogenetic to Molecular Analysis was succesfully defended on 25 September 2009.

For more information, please contact:
Carola Hedberg, Department of Cell and Molecular Biology, University of Gothenburg
+46 31 3436527
+46 70 4047670
carola.hedberg@cmb.gu.se
Press information: Krister Svahn
krister.svahn@science.gu.se
+46 31-7864912

Helena Aaberg | idw
Further information:
http://gupea.ub.gu.se/dspace/handle/2077/20300
http://www.gu.se/

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>