Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes hold secret to survival of Antarctic 'antifreeze fish'

17.10.2008
A genetic study of a fish that lives in the icy waters off Antarctica sheds light on the adaptations that enable it to survive in one of the harshest environments on the planet.

The study, in the Proceedings of the National Academy of Sciences, is the first to search the genome of an Antarctic notothenioid fish for clues to its astounding hardiness.

There are eight families of notothenioid fish, and five of them inhabit the Southern Ocean, the frigid sea that encircles the Antarctic continent. These fish can withstand temperatures that would turn most fish to ice. Their ability to live in the cold – and oxygen-rich – extremes is so extraordinary that they make up more than 90 percent of the fish biomass of the Southern Ocean.

University of Illinois animal biology professor Arthur DeVries discovered in the late 1960s that some notothenioids manufacture their own “antifreeze proteins.” These proteins bind to ice crystals in the blood to prevent the fish from freezing.

In the new study, U. of I. animal biology professor C.-H. Christina Cheng and her colleagues at the Chinese Academy of Sciences sought comprehensive genetic clues that would help explain how the Antarctic notothenioids survive.

“Nobody has ever actually looked at the whole range of biological functions in these fish that are important for living in this chronically cold environment,” Cheng said. “This is the first study that does that.”

Cheng and her colleagues wanted to know which genes were being expressed (that is, translated into proteins) at high levels in one representative species of Antarctic notothenioid, Dissostichus mawsoni.

They analyzed gene expression in four tissues: the brain, liver, head kidney (the primary blood-forming organ in fish) and ovary of D. mawsoni.

“We saw this very peculiar profile where in each of these tissues the proteins that are highly expressed are from a small set of genes,” Cheng said. “Each tissue makes all kinds of transcripts – the genetic messages that are made into proteins – but we found that a small group of genes dominates the transcriptional process.”

The researchers reasoned that any proteins that gave the fish an advantage in a cold, oxygen-rich environment would be expressed at high levels in the Antarctic fish. But it could also be true that specific tissues simply expressed more of certain proteins.

To get a better idea of whether the genes that were “upregulated” in D. mawsoni enhanced its survival in the Antarctic, the researchers compared gene expression in D. mawsoni and in the same tissues of several unrelated, warm-water fish. They found that most of the genes that were highly expressed in the Antarctic fish were not elevated in the warm-water fish.

When they analyzed the upregulated genes, the researchers found that many of them coded for proteins that respond to environmental stress. There were many chaperone proteins, including “heat shock proteins,” for example, which protect other proteins from being damaged by stresses such as extreme cold (or heat).

Other proteins, called ubiquitins, were also expressed at higher levels in the Antarctic fish. Ubiquitins help maintain the health of cells and tissues by targeting damaged proteins for destruction.

The researchers also found very high expression of genes coding for proteins that scavenge reactive oxygen atoms or molecules in cells or alleviate oxidative cell damage or cell death. These proteins help the fish combat oxidative stress in the oxygen-rich Southern Ocean. (Oxygen dissolves much more readily in cold water, and high oxygen levels can produce highly reactive atoms or molecules that can damage cells and tissues.)

“Many of the proteins that were upregulated in the Antarctic fish are involved in maintaining the integrity of functional proteins and cells in these fish,” Cheng said.

The researchers also compared gene frequency in the Antarctic fish to that of their warm-water cousins, the three families of notothenioids that have never lived in icy waters. They found that many of the same genes that were upregulated in the Antarctic fish were also present in greater numbers than in their warm-water cousins. The actual genes had been duplicated, occurring three- to 300-fold more often in the genome of the Antarctic fish than in their warm-water cousins.

“The many more copies of these genes in the Antarctic fish would empower greater transcription and provide more of the needed protein functions,” Cheng said. “We have direct verification that these genes are indeed highly duplicated in the Antarctic species relative to their non-Antarctic cousins that have never seen cold water.”

Cheng said the findings could help scientists understand how global climate change will affect the cold-water fish.

“If you have a drastic rise in the water temperature we don’t know how well the Antarctic fish will adapt, whether they will die out or not,” Cheng said. “And if they do, then the whole Antarctic food web will be drastically affected.”

Cheng’s lab currently is conducting studies on how the fish respond to warming.

Editor’s notes: To reach C.-H. Christina Cheng, call 217-333-4245; e-mail: c-cheng@illinois.edu or cdevries@life.illinois.edu.

The study, “Transcriptomic and Genomic Evolution Under Constant Cold in Antarctic Notothenioid Fish,” appeared in August in Proceedings of the National Academy of Sciences.

Diana Yates | University of Illinois
Further information:
http://news.illinois.edu/news/08/1016antarcticfish.html

More articles from Life Sciences:

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

nachricht Bioluminescent worm found to have iron superpowers
15.12.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Diamond Lenses and Space Lasers at Photonics West

15.12.2017 | Trade Fair News

A better way to weigh millions of solitary stars

15.12.2017 | Physics and Astronomy

New epidemic management system combats monkeypox outbreak in Nigeria

15.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>