Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes may exert opposite effects in diabetes and inflammatory bowel disease

23.03.2010
Both autoimmune diseases may respond to a 2-way genetic switch

Pediatric researchers analyzing DNA variations in type 1 diabetes and inflammatory bowel disease have found a complex interplay of genes. Some genes have opposing effects, raising the risk of one disease while protecting against the other. In other cases, a gene variant may act in the same direction, raising the risk for both diseases.

Both type 1 diabetes (T1D) and inflammatory bowel disease (IBD) are autoimmune disorders—conditions in which the body's immune system overreacts, resulting in disease. Many such autoimmune diseases share genes in common, acting on shared biological pathways.

"This finding shows the genetic architecture of these diseases is more complex than previously thought," said study leader Hakon Hakonarson, M.D., Ph.D., director of the Center for Applied Genomics at The Children's Hospital of Philadelphia. "We knew that multiple genes that interact with each other and with environmental factors are needed to bring on these complex diseases, and we are still detecting these genes and uncovering those interactions. But we now see that some genes influence more than one disease, and sometimes in the opposite direction."

Hakonarson and colleagues, including collaborators from more than a dozen institutions in four countries, published the study online in an advance article on Feb. 22 in Human Molecular Genetics.

Inflammatory bowel disease consists of Crohn's disease (CD), which may affect the entire digestive tract, but especially the small intestine, and ulcerative colitis (UC), mainly affecting the large intestine. Type 1 diabetes, also called insulin-dependent diabetes, occurs when the body produces little or no insulin because the immune system destroys insulin-producing cells.

The study team analyzed samples from 1,689 children and adolescents with CD, 777 with UC, and 989 with type 1 diabetes, as well as 6,197 control samples from healthy children. All the children were of European ancestry. The IBD and T1D samples were all from patients with early-onset disease, i.e., occurring by age 19.

The genome-wide association study (GWAS) identified multiple gene variants not previously reported for these diseases, in addition to evaluating genes previously discovered to be associated with one, two or all three diseases. The study team found overlaps among gene variants that conferred risk for both T1D and IBD. They also found four variants impacting the genes PTPN22, IL27, IL18RAP and IL10 that raised the risk of T1D while lowering the risk of Crohn's disease.

These opposing effects, said Hakonarson, could suggest a possible "genetic switch" on some biological pathways involved in both IBD and type 1 diabetes. "For these autoimmune disorders, the switch could be activated by specific infectious agents that trigger immune responses that are mediated by selective immunological pathways," he said. He noted that a pathogen could interact with a gene that raises the risk for type 1 diabetes at the same time it confers protection from Crohn's disease. "Infections cause a lot of adaptation within the immune system, and could be exerting selective pressure in driving genomes to evolve, where the resulting disease risk or protection is more of a bystander," Hakonarson added.

Hakonarson cautioned that the potential genetic switch is currently an interesting hypothesis, requiring further investigation. Even the four gene variants (single nucleotide polymorphisms, or SNPs) that seem to cause opposing effects for these diseases may be markers for yet unknown causative genes that act in the same direction. "We won't know the exact impact of these variants until we have more sequencing data," he concluded.

Funding for this study came from The Children's Hospital of Philadelphia, through an Institute Development Award to the Center for Applied Genomics; from Genome Canada through the Ontario Genomics Institute and the Juvenile Diabetes Research Foundation; the Primary Children's Medical Center Foundation; and the National Center for Research Resources of the National Institutes of Health.

"Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects," Human Molecular Genetics, advance access published Feb. 22, 2010. doi:10.1093/hmg/ddq078

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking second in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 443-bed hospital recognition as a leading advocate for children and adolescents.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>