Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes, environment, or chance?

19.02.2010
Biologists attribute variations among individual organisms to differences in genes or environment, or both. But a new study of nematode worms with identical genes, raised in identical environments, has revealed another factor: chance.

It's another source of variation for scientists to consider. "Researchers have been exploring whether organisms evolve different ways to cope with genetic and environmental variation," said author Scott Rifkin, an assistant professor of biology at UC San Diego. "This study adds random variation to that mix."

Rifkin, who joined the UCSD faculty this fall, completed the study while working at MIT. The paper, co-authored by Arjun Raj, who contributed equally to the work, Erik Andersen and Alexander van Oudenaarden of MIT, is published in the February 18 issue of Nature.

Rifkin and his colleagues looked at the development of the gut in C. elegans. In many, but not all worms with mutations in a gene called skn-1, the gut failed to develop, even when the embryos were genetically identical and incubated together.

"Often when people look at variation in a trait among organisms they try to trace it back to genetic differences or differences in environmental conditions or some combination of the two. In our study there were no such differences, and so we hypothesized that the only other source for the variation could be differences that arose at random during the process of development," Rifkin said.

The mutated gene is the first in a series of several genes that control each other in sequence to determine whether the gut precursors begin to develop into intestinal cells.

In mutant worms, the final gene was either on or off, and that determined whether an embryo developed gut cells or not. But the activity of an intermediate gene varied widely. That's where chance seems to play a role.

Some mutant cells transcribed the gene many times, ultimately creating enough of the protein to activate the final gene. Others made too few transcripts and the final gene stayed off.

DNA winds tightly around proteins, like thread around a spool, and must uncoil for the transcriptional machinery to access a gene.

Some proteins unwind the DNA; others wind it up again. In the mutant worms, the balance shifted to favor the proteins that keep DNA wound. But in some of the worms, the DNA stayed uncoiled long enough to generate sufficient numbers of transcripts to activate the final gene. And so, by chance, those worms developed a gut.

The National Institutes of Health funded this work.

Scott Rifkin | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>