Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes controlling insulin can alter timing of biological clock

21.09.2009
Many of the genes that regulate insulin also alter the timing of the circadian clock, a new study has found.

Although insulin responses were known to follow daily rhythms, the finding that components of the insulin-control system can reset the body's clock surprised the study's authors and suggests new approaches to treating disorders such as metabolic syndrome that can result, at least in part, from chronic disruption of the sleep-wake cycle.

"People knew that the clock regulates many different processes, but what they didn't realize what that when you tweak those processes, it feeds back and alters the clock," said Steve Kay, Dean of the Division of Biological Sciences at the University of California, San Diego, who led the study along with John Hogenesch of the University of Pennsylvania.

Several other important physiological control systems shift the clock as well, they report online this week in the journal Cell.

A molecular clock controls daily physiological rhythms in many types of cells, even cells grown in culture. By engineering cultured cells to glow yellow when a particular clock gene switched on, the team made the cycle visible. They then interfered with every human gene to see which would shift the clock. Hundreds altered the timing.

"We just suddenly discovered 350 new genes that affect the clock that weren't known before," Kay said. Subsequent screening to confirm the genes' effect on a second clock gene narrowed the list to 200.

Genes belonging to four systems appeared on the "hit" list more often than chance would predict: insulin and folate metabolism, and two systems that govern the life cycle and fate of cells. Seven genes involved in insulin control also influenced the rhythms of the clock.

"What came out very strongly was this close relationship between circadian regulation and insulin signaling," Kay said. "There's a reciprocal relationship between circadian dysfunction and metabolic dysfunction."

Genetically altered mice with malfunctioning clocks become obese and develop diet-induced diabetes, Kay points out. And studies of humans forced into a kind of chronic jetlag have seen marks of the onset of metabolic syndrome.

"Understanding this close relationship between circadian regulation and metabolic homeostasis should provide novel ways of identifying new therapies for metabolic disease," Kay said.

The wealth of data the team has created will also serve as a resource for other scientists who study circadian rhythms, Kay said. They have deposited data describing how each gene alters the rhythm of the clock to an open-access genetics database called BioGPS, along with a new "plug-in" application that displays the cyclical response.

Scientists working with Kay at UC San Diego are currently following up on some of the links between the clock and insulin control. Kay also serves on the scientific advisory board of ReSet Therapeutics, a venture that aims to discover and develop potential dugs to treat illnesses that result from chronic disruption of circadian rhythms.

Additional co-authors include Eric Zhang, Andrew Liu, Tsuyoshi Hirota, Loren Miraglia, Genevieve Welch, Xianzhong Liu, Jon Huss, Jeff Janes and Andrew Su of the Genomics Institute of the Novartis Research Foundation; and Pagkapol Pongsawakul and Ann Atwood of UC San Diego.

The National Institutes of Health supported this work.

Steve Kay | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>