Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes controlling insulin can alter timing of biological clock

21.09.2009
Many of the genes that regulate insulin also alter the timing of the circadian clock, a new study has found.

Although insulin responses were known to follow daily rhythms, the finding that components of the insulin-control system can reset the body's clock surprised the study's authors and suggests new approaches to treating disorders such as metabolic syndrome that can result, at least in part, from chronic disruption of the sleep-wake cycle.

"People knew that the clock regulates many different processes, but what they didn't realize what that when you tweak those processes, it feeds back and alters the clock," said Steve Kay, Dean of the Division of Biological Sciences at the University of California, San Diego, who led the study along with John Hogenesch of the University of Pennsylvania.

Several other important physiological control systems shift the clock as well, they report online this week in the journal Cell.

A molecular clock controls daily physiological rhythms in many types of cells, even cells grown in culture. By engineering cultured cells to glow yellow when a particular clock gene switched on, the team made the cycle visible. They then interfered with every human gene to see which would shift the clock. Hundreds altered the timing.

"We just suddenly discovered 350 new genes that affect the clock that weren't known before," Kay said. Subsequent screening to confirm the genes' effect on a second clock gene narrowed the list to 200.

Genes belonging to four systems appeared on the "hit" list more often than chance would predict: insulin and folate metabolism, and two systems that govern the life cycle and fate of cells. Seven genes involved in insulin control also influenced the rhythms of the clock.

"What came out very strongly was this close relationship between circadian regulation and insulin signaling," Kay said. "There's a reciprocal relationship between circadian dysfunction and metabolic dysfunction."

Genetically altered mice with malfunctioning clocks become obese and develop diet-induced diabetes, Kay points out. And studies of humans forced into a kind of chronic jetlag have seen marks of the onset of metabolic syndrome.

"Understanding this close relationship between circadian regulation and metabolic homeostasis should provide novel ways of identifying new therapies for metabolic disease," Kay said.

The wealth of data the team has created will also serve as a resource for other scientists who study circadian rhythms, Kay said. They have deposited data describing how each gene alters the rhythm of the clock to an open-access genetics database called BioGPS, along with a new "plug-in" application that displays the cyclical response.

Scientists working with Kay at UC San Diego are currently following up on some of the links between the clock and insulin control. Kay also serves on the scientific advisory board of ReSet Therapeutics, a venture that aims to discover and develop potential dugs to treat illnesses that result from chronic disruption of circadian rhythms.

Additional co-authors include Eric Zhang, Andrew Liu, Tsuyoshi Hirota, Loren Miraglia, Genevieve Welch, Xianzhong Liu, Jon Huss, Jeff Janes and Andrew Su of the Genomics Institute of the Novartis Research Foundation; and Pagkapol Pongsawakul and Ann Atwood of UC San Diego.

The National Institutes of Health supported this work.

Steve Kay | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>