Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes controlling insulin can alter timing of biological clock

21.09.2009
Many of the genes that regulate insulin also alter the timing of the circadian clock, a new study has found.

Although insulin responses were known to follow daily rhythms, the finding that components of the insulin-control system can reset the body's clock surprised the study's authors and suggests new approaches to treating disorders such as metabolic syndrome that can result, at least in part, from chronic disruption of the sleep-wake cycle.

"People knew that the clock regulates many different processes, but what they didn't realize what that when you tweak those processes, it feeds back and alters the clock," said Steve Kay, Dean of the Division of Biological Sciences at the University of California, San Diego, who led the study along with John Hogenesch of the University of Pennsylvania.

Several other important physiological control systems shift the clock as well, they report online this week in the journal Cell.

A molecular clock controls daily physiological rhythms in many types of cells, even cells grown in culture. By engineering cultured cells to glow yellow when a particular clock gene switched on, the team made the cycle visible. They then interfered with every human gene to see which would shift the clock. Hundreds altered the timing.

"We just suddenly discovered 350 new genes that affect the clock that weren't known before," Kay said. Subsequent screening to confirm the genes' effect on a second clock gene narrowed the list to 200.

Genes belonging to four systems appeared on the "hit" list more often than chance would predict: insulin and folate metabolism, and two systems that govern the life cycle and fate of cells. Seven genes involved in insulin control also influenced the rhythms of the clock.

"What came out very strongly was this close relationship between circadian regulation and insulin signaling," Kay said. "There's a reciprocal relationship between circadian dysfunction and metabolic dysfunction."

Genetically altered mice with malfunctioning clocks become obese and develop diet-induced diabetes, Kay points out. And studies of humans forced into a kind of chronic jetlag have seen marks of the onset of metabolic syndrome.

"Understanding this close relationship between circadian regulation and metabolic homeostasis should provide novel ways of identifying new therapies for metabolic disease," Kay said.

The wealth of data the team has created will also serve as a resource for other scientists who study circadian rhythms, Kay said. They have deposited data describing how each gene alters the rhythm of the clock to an open-access genetics database called BioGPS, along with a new "plug-in" application that displays the cyclical response.

Scientists working with Kay at UC San Diego are currently following up on some of the links between the clock and insulin control. Kay also serves on the scientific advisory board of ReSet Therapeutics, a venture that aims to discover and develop potential dugs to treat illnesses that result from chronic disruption of circadian rhythms.

Additional co-authors include Eric Zhang, Andrew Liu, Tsuyoshi Hirota, Loren Miraglia, Genevieve Welch, Xianzhong Liu, Jon Huss, Jeff Janes and Andrew Su of the Genomics Institute of the Novartis Research Foundation; and Pagkapol Pongsawakul and Ann Atwood of UC San Diego.

The National Institutes of Health supported this work.

Steve Kay | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

International Workshop Sees Central Role for Solar in Transforming the World Energy Economy

28.05.2018 | Seminars Workshops

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>