Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Few genes control neuronal function

14.03.2012
How are 100 billion cells created, each with specific duties? The human brain is evidence that nature can achieve this. Researchers at Linköping University in Sweden have now taken a step closer to solving this mystery.

"Knowledge about the mechanisms that diversify neurons and keep them diverse is necessary in order to cultivate and replace nerve cells in the future," says Mattias Alenius, Assistant Professor of Neuroscience, who has published his research breakthrough in the current issue of the journal PLoS Biology.


The magenta-colored structures are nerve cells that use odorant receptor 47b, which senses pheromones. Expression of this receptor is controlled by the transcription factor E93. When E93 is removed, the neurons lose their ability to fulfill their task do detect pheromones, as evidenced by the deactivation of the fluorescent proteins (image to the right). The glowing, green cells, that use olfactory receptor 92a, are not affected because they are controlled by other transcription factors. Credit: Mattias Alenius

Alenius and his research team at the Department of Experimental and Clinical Medicine seek the answer to this pivotal question from a smaller perspective: the fruit fly's olfactory system.

The humble fly's olfactory system consists of 1200 olfactory neurons (humans have six million) divided into 34 groups. Each group responds to a particular set of odours, since all the neurons of the group use only one of the olfactory receptors present in the fly's antennas. Together, the receptors provide the fly with the ability to distinguish between thousands of odours: one olfactory receptor – one neuron group, simple yet complex.

Alenius and his colleagues are the first to go through all of the fruit fly's 753 gene regulatory genes, called transcription factors. They have identified a set of seven that, in different combinations, are required to create each of the 34 neuron groups in the antenna. A surprising finding is that most transcription factors perform two tasks simultaneously: they can activate odorant receptors' expression; while at the same time turning off others in the same cell.

Alenius explains, "This is one of the many tricks that are useful to know for the future if you want to make and cultivate each of the many thousands of nerve cell groups that make up our brains."

Article: Combinatorial activation and repression by seven transcriptor factors specify Drosophila odorant receptor expression by S Jafari, L Alkhori, A Scheffler, A Brochtrup, T Hummel and M Alenius. PLoS Biology, 10:3, March 2012.

Mattias Alenius | EurekAlert!
Further information:
http://www.liu.se

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>