Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Genes in Your Congeniality

28.01.2009
Can’t help being the life of the party? Maybe you were just born that way. Researchers from Harvard University and the University of California, San Diego have found that our place in a social network is influenced in part by our genes, according to new findings published in the Proceedings of the National Academy of Sciences.

This is the first study to examine the inherited characteristics of social networks and to establish a genetic role in the formation and configuration of these networks.

The research was conducted by Nicholas Christakis of Harvard, who is professor of sociology in the Faculty of Arts and Sciences and professor of medical sociology at Harvard Medical School, Christopher Dawes and James Fowler, both of UC San Diego.

“We were able to show that our particular location in vast social networks has a genetic basis,” says Christakis. “In fact, the beautiful and complicated pattern of human connection depends on our genes to a significant measure.”

While it might be expected that genes affect personality, these findings go further and illustrate a genetic influence on the structure and formation of an individual’s social group.

The researchers found that popularity, or the number of times an individual was named as a friend, and the likelihood that those friends know one another were both strongly heritable. Additionally, location within the network, or the tendency to be at the center or on the edges of the group, was also genetically linked. However, the researchers were surprised to learn that the number of people named as a friend by an individual did not appear to be inherited.

The study included national data (from the National Longitudinal Study of Adolescent Health) for the social networks of 1,110 adolescent twins, both fraternal and identical. The researchers compared the social networks of the identical twins to those of the fraternal twins and found greater similarity between the identical twins’ social network structure than the fraternal twins’ networks.

There may be an evolutionary explanation for this genetic influence and the tendency for some people to be at the center while others are at the edges of the group, according to the researchers. If a deadly germ is spreading through a community, individuals at the edges are least likely to be exposed. However, to gain access to important information about a food source, being in the center of the group has a distinct benefit.

“One of the things that the study tells us is that social networks are likely to be a fundamental part of our genetic heritage,” says Fowler, associate professor of political science at UC San Diego. “It may be that natural selection is acting on not just things like whether or not we can resist the common cold, but also who it is that we are going to come into contact with.”

The findings also illuminate a previously unknown limitation of existing social network models, which had assumed that all members behave as interchangeable cogs. To address these intrinsic differences in human beings that contribute to the formation of social networks, the researchers have created a new mathematical model, called the “attract and introduce” model, which is also explained in this paper and supports the genetic variation of members.

This model creates networks that very closely simulate actual human social networks, and using this model, they found that when someone was placed in any virtual network, they gravitated towards the same place within the network.

Because both health behaviors and germs spread through social networks, understanding how contagions flow through social networks has the potential to improve strategies for addressing public health concerns such as obesity or the flu.

“I think that going forward, we are going to find that social networks are a critical conduit between our genes and important health outcomes,” says Fowler.

Fowler and Christakis have also published on other aspects of social networks, such as the spread of obesity, smoking cessation and happiness.

The research was funded by the National Institute on Aging and the National Science Foundation.

Inga Kiderra | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>