Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes against Cancer

13.02.2012
Ovarian Cancer: New Tumour Suppressor Gene Identified

A recent study published in CLINICAL CANCER RESEARCH suggests that the protein hVps37A suppresses tumour growth in ovarian cancer. The work, which was funded by the Austrian Science Fund FWF, shows, for the first time, that this protein is significantly reduced in ovarian cancer cells.

The scientists also found that this reduction affects a cellular signalling pathway that is associated with the membrane receptor EGFR (Epidermal Growth Factor Receptor). The receptor is considered an important biological marker for the course of the disease and therapy, and also serves as a target for modern treatment of different cancer types. In fact, the cells in which hVps37A synthesis was reduced showed resistance to Cetuximab, an approved substance for inhibition of EGFR activity.

The hVps37A gene as such is not unknown to scientists. In the period 2004 to 2007, a systematic genome search as part of a project funded by the Austrian Science Fund FWF determined that, among others, this gene is down-regulated in ovarian cancer. The then head of studies, Prof. Michael Krainer, has now studied the function of this gene further in this particular type of cancer. The published results of this follow-up project show that hVps37A is a hitherto unknown tumour suppressor gene.

RECEPTOR FOR SUCCESS
With reference to the study, Prof. Krainer, Director of the Molecular Genetics Working Group, Department of Oncology, University Clinic for Internal Medicine I, Vienna General Hospital, explains: "Our results, which are based on an unparalleled number of tissue samples from ovarian cancer, clearly confirm a significant reduction of hVps37A activity. At the same time, we found that this reduced activity strongly influences the activity of the membrane receptor EGFR. This is an essential indication of the function of hVps37A - and of the importance of our results for other cancer types, in which EGFR activity causes cancer to develop."

The Epidermal Growth Factor Receptor (EGFR) "transmits" signals from the extracellular domain to within the cell. The binding of signal substances on the cell surface of the receptor causes a chemical modification (phosphorylation) of the receptor structure on the side of the cell lumen. This signal subsequently affects numerous cellular processes significantly, including cell proliferation, and may therefore contribute to the development of cancer.

EFFECTIVE DEGRADATION
In a further key experiment, Prof. Krainer´s team was able to show that the proportions of activated and inactive EGFR in certain ovarian cancer cells were clearly adjusted when hVps37A activity was reduced. According to Prof. Krainer, "this result shows that hVps37A plays a crucial role in degrading the activated form of EGFR. In hVps37A-deficient cells, the activated form of EGFR is no longer degraded and therefore continues to greatly affect subsequent cellular processes - something that hVps37A would inhibit." Indeed, it is commonly known that a protein similar to hVps37A is responsible for disposing of certain "obsolete" proteins in membrane vesicles in yeast cells. Prof. Krainer is of the opinion that the human version of the protein could have a similar role to play.

This theory would explain another result found by Prof. Krainer´s group, namely that cancer cells with reduced hVps37A activity become resistant to Cetuximab, but not to Lapatinib. Cetuximab inhibits EGFR-mediated signal transduction; however, the Cetuximab-EGFR complex must then be degraded in order for the therapy to remain effective. In the case of Lapatinib, which directly inhibits EGFR phosphorylation, this is not necessary.

On the whole, the results from this FWF project offer the first fundamental description of a previously unknown tumour suppressor gene in ovarian cancer cells. Its effect on the EGF receptor also makes the tumour suppressor gene relevant for other types of cancer.

Original Publication: hVps37A Status Affects Prognosis and Cetuximab Sensitivity in Ovarian Cancer. M. Wittinger, P. Vanhara, A. El-Gazzar, B. Savarese-Brenner, D. Pils, M. Anees, T. W. Grunt, M. Sibilia, M. Holcmann, R. Horvat, M. Schemper, R. Zeillinger, C. Schöfer, H. Dolznig, P. Horak and M. Krainer. Clinical Cancer Research 2011;17:7816-7827 DOI:10.1158/1078-0432.CCR-11-0408

Picture and text available from Monday, 13 February 2012, 9 am CET at:
http://www.fwf.ac.at/en/public_relations/press/pv201202-en.html
Scientific Contact:
Prof. Michael Krainer
Medical University of Vienna
Spitalgasse 23
1090 Vienna, Austria
T +43 / (0)664 / 183 76 77
E michael.krainer@meduniwien.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Education Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Margot Pechtigam | PR&D
Further information:
http://www.fwf.ac.at

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>