Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes against Cancer

13.02.2012
Ovarian Cancer: New Tumour Suppressor Gene Identified

A recent study published in CLINICAL CANCER RESEARCH suggests that the protein hVps37A suppresses tumour growth in ovarian cancer. The work, which was funded by the Austrian Science Fund FWF, shows, for the first time, that this protein is significantly reduced in ovarian cancer cells.

The scientists also found that this reduction affects a cellular signalling pathway that is associated with the membrane receptor EGFR (Epidermal Growth Factor Receptor). The receptor is considered an important biological marker for the course of the disease and therapy, and also serves as a target for modern treatment of different cancer types. In fact, the cells in which hVps37A synthesis was reduced showed resistance to Cetuximab, an approved substance for inhibition of EGFR activity.

The hVps37A gene as such is not unknown to scientists. In the period 2004 to 2007, a systematic genome search as part of a project funded by the Austrian Science Fund FWF determined that, among others, this gene is down-regulated in ovarian cancer. The then head of studies, Prof. Michael Krainer, has now studied the function of this gene further in this particular type of cancer. The published results of this follow-up project show that hVps37A is a hitherto unknown tumour suppressor gene.

RECEPTOR FOR SUCCESS
With reference to the study, Prof. Krainer, Director of the Molecular Genetics Working Group, Department of Oncology, University Clinic for Internal Medicine I, Vienna General Hospital, explains: "Our results, which are based on an unparalleled number of tissue samples from ovarian cancer, clearly confirm a significant reduction of hVps37A activity. At the same time, we found that this reduced activity strongly influences the activity of the membrane receptor EGFR. This is an essential indication of the function of hVps37A - and of the importance of our results for other cancer types, in which EGFR activity causes cancer to develop."

The Epidermal Growth Factor Receptor (EGFR) "transmits" signals from the extracellular domain to within the cell. The binding of signal substances on the cell surface of the receptor causes a chemical modification (phosphorylation) of the receptor structure on the side of the cell lumen. This signal subsequently affects numerous cellular processes significantly, including cell proliferation, and may therefore contribute to the development of cancer.

EFFECTIVE DEGRADATION
In a further key experiment, Prof. Krainer´s team was able to show that the proportions of activated and inactive EGFR in certain ovarian cancer cells were clearly adjusted when hVps37A activity was reduced. According to Prof. Krainer, "this result shows that hVps37A plays a crucial role in degrading the activated form of EGFR. In hVps37A-deficient cells, the activated form of EGFR is no longer degraded and therefore continues to greatly affect subsequent cellular processes - something that hVps37A would inhibit." Indeed, it is commonly known that a protein similar to hVps37A is responsible for disposing of certain "obsolete" proteins in membrane vesicles in yeast cells. Prof. Krainer is of the opinion that the human version of the protein could have a similar role to play.

This theory would explain another result found by Prof. Krainer´s group, namely that cancer cells with reduced hVps37A activity become resistant to Cetuximab, but not to Lapatinib. Cetuximab inhibits EGFR-mediated signal transduction; however, the Cetuximab-EGFR complex must then be degraded in order for the therapy to remain effective. In the case of Lapatinib, which directly inhibits EGFR phosphorylation, this is not necessary.

On the whole, the results from this FWF project offer the first fundamental description of a previously unknown tumour suppressor gene in ovarian cancer cells. Its effect on the EGF receptor also makes the tumour suppressor gene relevant for other types of cancer.

Original Publication: hVps37A Status Affects Prognosis and Cetuximab Sensitivity in Ovarian Cancer. M. Wittinger, P. Vanhara, A. El-Gazzar, B. Savarese-Brenner, D. Pils, M. Anees, T. W. Grunt, M. Sibilia, M. Holcmann, R. Horvat, M. Schemper, R. Zeillinger, C. Schöfer, H. Dolznig, P. Horak and M. Krainer. Clinical Cancer Research 2011;17:7816-7827 DOI:10.1158/1078-0432.CCR-11-0408

Picture and text available from Monday, 13 February 2012, 9 am CET at:
http://www.fwf.ac.at/en/public_relations/press/pv201202-en.html
Scientific Contact:
Prof. Michael Krainer
Medical University of Vienna
Spitalgasse 23
1090 Vienna, Austria
T +43 / (0)664 / 183 76 77
E michael.krainer@meduniwien.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Education Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Margot Pechtigam | PR&D
Further information:
http://www.fwf.ac.at

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>