Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Different genes behind same adaptation to thin air

07.12.2012
Apparent example of convergent human evolution on 2 continents

Highlanders in Tibet and Ethiopia share a biological adaptation that enables them to thrive in the low oxygen of high altitudes, but the ability to pass on the trait appears to be linked to different genes in the two groups, research from a Case Western Reserve University scientist and colleagues shows.

The adaptation is the ability to maintain a relatively low (for high altitudes) level of hemoglobin, the oxygen-carrying protein in red blood cells. Members of ethnic populations - such as most Americans - who historically live at low altitudes naturally respond to the thin air by increasing hemoglobin levels. The response can help draw oxygen into the body, but increases blood viscosity and the risks for thrombosis, stroke and difficulties with pregnancies.

By revealing how populations can live in severe environments, the research may provide insight for managing high-altitude sickness and for treating low blood-oxygen conditions such as asthma, sleep apnea, and heart problems among all people.

How long such physiological and genetic changes take remains a question. The researchers found the adaptation in an ethnic group that has lived high in mountains of Ethiopia for at least 5,000 years, but not among a related group that has lived high in the mountains for 500 years.

The findings are reported today in the open-access online journal PLoS Genetics.

In their first comparison, the researchers found that the genes responsible for hemoglobin levels in Tibetans don't influence an ethnic group called the Amhara

The Amhara have lived more than a mile high in the Semien Mountains of northern Ethiopia for 5,000 to 70,000 years. A different variant on the Amhara genome, far away from the location of the Tibetan variant, is significantly associated with their low hemoglobin levels.

"All indications are we're seeing convergent evolution," said Cynthia Beall, professor of anthropology at Case Western Reserve University and one of the leaders of the study. Convergent evolution is when two separate populations change biologically in a similar way to adapt to a similar environment yet use different mechanisms.

"These were two different evolutionary experiments," Beall said of the mountain dwellers in Tibet and Ethiopia. "On one level—the biological response—they are the same. On another level—the changes in the gene pool—they are different."

Beall investigated the adaptations and genetic links with Gorka Alkorta-Aranburu, David Witonsky, Jonathan K. Pritchard and Anna Di Rienzo, of the University of Chicago department of human genetics, and Amha Gebremedhin of Adis Ababa University's department of internal medicine in Ethiopia.

In addition to studying the Amhara, the researchers looked for changes in physiology and genetics among a related ethnic group, the Oromo, who have lived more than a mile above sea level in the Bale Mountains of southern Ethiopia for 500 years.

They found no long-term adaptation and no genetic changes related to a low-oxygen environment.

They found the Omoro had high levels of hemoglobin, as would be expected for a lowland population.

Using the same samples collected from the Amhara and Oromo, the researchers are now studying biological traits among the groups, including ventilation, and the influence of vasoconstrictors and vasodilators on blood flow, and searching for associations with genes.

They also plan to continue research and study blood flow, especially through the heart and lungs of the highlanders, and to test the metabolic rate of mitochondria that use oxygen to create the energy on which our cells and we operate.

"We also want to find whether people with the variants for low hemoglobin levels have more children and a higher survival rate," Beall said. "That's the evolutionary payoff."

This research was funded by the National Science Foundation.

Kevin Mayhood | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>