Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All genes in 1 go

30.08.2010
The majority of rare diseases are hereditary. But despite significant progress in genome research, in most cases their exact cause remains unclear. The discovery of the underlying genetic defect is, however, a prerequisite for their definitive diagnosis and the development of innovative approaches to their treatment.

Scientists at the Max Planck Institute for Molecular Genetics and the Institute of Medical Genetics at the Charité Universitätsmedizin - Berlin have succeeded in using a new process with which all of the genes in the human genome can be analysed simultaneously.

The process was used for the first time on three children in a family who suffer from a rare form of mental retardation (Mabry Syndrome). The analysis revealed a mutation in the PIGV gene that results in the inability of proteins, for example alkaline phosphatase, to anchor to the surface of cell membranes. The results reveal that the new genome sequencing processes are suitable for tracking down individual mutations in the genome and for the identification of these mutations as the cause of rare diseases. (Nature Genetics, August 29th 2010)

The Berlin-based researchers used high throughput sequencing technology for the first time to identify the genetic defect behind a very rare disease. "It was like the proverbial search for a needle in a haystack. We fished out solely the 22,000 genes from the entire genome, decoded their sequence and examined them for mutations. Using new bioinformatic analyses, we were able to limit the number of mutation candidates to two – one of which is ultimately responsible for Mabry Syndrome," explains Michal Ruth Schweiger from the Max Planck Institute for Molecular Genetics. The available results will enable, for example, the identification of the genetic risk in affected couples who would like to have children.

Mabry Syndrome is a rare recessive genetic disorder that causes mental retardation, seizures and a characteristic mutation in the blood values of those affected. The raised level of the enzyme alkaline phosphatase, which usually plays a role in bone metabolism, can be measured in the blood. The researchers succeeded in showing that in the case of Mabry Syndrome the PIGV gene is mutated. PIGV codes, in turn, for an enzyme that is involved in the formation of the GPI anchor. This carbohydrate molecule binds proteins to the cell membrane. According to the scientists in Berlin, the gene for PIGV is mutated in such a way that the alkaline phosphatase is not adequately connected to the cell membrane. It separates from the membrane, accumulates in the blood, and thereby leads to an increase in blood levels. The researchers assume that PIGV in the brain is responsible for the anchoring of many other proteins and that this malfunction is responsible for the mental retardation associated with Mabry Syndrome.

Based on these results, the scientists will be able to carry out further research on the disease and develop new options for its treatment. The methods of genome analysis developed here enable the identification of mutations even in the case of extremely rare diseases and represent an important step forward in the direction of individualised molecular medicine.

Original work:

Identity-by-Descent Filtering of Exome Sequence Data identifies PIGV mutations in Hyperphosphatasia Mental Retardation syndrome (HPMR)
Peter M. Krawitz, Michal R. Schweiger, Christian Rödelsperger, Carlo Marcelis, Uwe Kölsch, Christian Meisel, Friederike Stephani, Taroh Kinoshita, Yoshiko Murakami, Sebastian Bauer, Melanie Isau, Axel Fischer, Andreas Dahl, Martin Kerick, Jochen Hecht, Sebastian Köhler, Marten Jäger, Johannes Grünhagen, Birgit Jonske de Condor, Sandra Doelken, Han G. Brunner, Peter Meinecke, Eberhard Passarge, Miles D. Thompson, David E. Cole, Denise Horn, Tony Roscioli, Stefan Mundlos & Peter N. Robinson

Nature Genetics, August 29th 2010

Patricia Marquardt | EurekAlert!
Further information:
http://www.molgen.mpg.de

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>