Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Generation of a Stable Biradical

22.03.2018

The world of chemistry has witnessed another step forward: researchers at the University of Würzburg in Germany have succeeded in twisting molecules so much that their double bonds have been completely destroyed. The result: unusually stable biradicals.

Boron has a range of uses throughout everyday life, from laundry bleaches to heat-proof glass and ceramics. Chemists at Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany, have a particular interest in the chemistry this element, and have been researching the fundamental properties of boron for years. These researchers have now succeeded in twisting molecules with multiple bonds between boron atoms, leading to unusually stable biradicals.


A conventional boron-boron double bond (left) and its extremely stable biradical relative.

(Graphic: Dr. Rian Dewhurst)

Biradicals are usually highly reactive molecules. They are generated in energetic processes such as combustion and are normally so short-lived that they are unable to be isolated or studied by traditional methods of chemical analysis.

The new biradicals prepared at the JMU are dramatically different, however: they are solid compounds and were found to be stable for weeks. "We now have model compounds in hand that we can study without having to rush", explains Prof. Holger Braunschweig from the Institute for Inorganic Chemistry. The results have been presented in the journal Nature Communications.

Twisting of boron-boron double bonds

For a long time, chemists have attempted to twist, distort and rupture double bonds between atoms – with only limited success. The JMU team has now made the dream of twisting a double bond by a full 90 degrees a reality.

The Würzburg researchers had originally expected to obtain diborenes from their reactions: the products should have had double bonds between their boron atoms, as would normally be the case. Instead, they obtained molecules where the double bond between the atoms was twisted by 90 degrees and thereby completely broken.

Biradicals in their electronic ground state

The result of the experiments was the synthesis of unusually stable biradicals. This is highly unusual: "When a molecule is twisted against its will, it usually becomes less stable, and also more reactive", explains Julian Böhnke, doctoral student at the JMU and first author of the publication in Nature Communications. "The stability of the molecules is due to them being biradicals in their electronic ground state, despite their two unpaired electrons", says Braunschweig. "This structure was completely unexpected."

Applications of the molecules are still far away, according to Prof. Braunschweig. If they could be installed into a polymeric material, their use in organic electronics could become a possibility. However, Braunschweig emphasises that "this is still a long way off". The next step for the JMU chemists is to test whether similarly stable biradicals can be prepared with double bonds between boron and carbon.

A success story of Research Training Group 2112

The study of the biradicals was particularly extensive and complex, involving sixteen researchers and three years of research. The main part of Julian Böhnke's doctoral thesis will be based on the topic. Böhnke is part of the Research Training Group (Graduiertenkolleg) 2112 (Molecular Biradicals: Structure, Properties and Reactivity), a research consortium headed by Prof. Ingo Fischer. The Research Training Group allows doctoral students to investigate the physical and chemical properties of biradicals in an interdisciplinary team.

Critical to the success of the study was the efficient collaboration with expert theoretical chemistry groups. Work by the teams of Profs. Bernd Engels and Roland Mitrić was essential in obtaining a thorough understanding of the bonding situations in the newly-prepared biradicals. Two other German research groups from Göttingen and Mülheim an der Ruhr were also integral parts of the team.

The work was financially supported as part of the Research Training Group 2112 funded by the German Research Foundation (DFG). Further support came from Prof. Braunschweig's Advanced Grant from the European Research Council.

Isolation of diborenes and their 90°-twisted diradical congeners, Nature Communications, 22 March 2018, DOI: 10.1038/s41467-018-02998-3

Contact

Prof. Dr. Holger Braunschweig, Institute for Inorganic Chemistry/Institute for Sustainable Chemistry & Catalysis with Boron, JMU, Tel +49 931 31-85260, h.braunschweig@uni-wuerzburg.de

Weitere Informationen:

http://www.uni-wuerzburg.de/grk2112/ Website of DFG Research Training Group 2112
https://www.braunschweiggroup.de/ Website of Prof. Dr. Holger Braunschweig

Robert Emmerich | Julius-Maximilians-Universität Würzburg

Further reports about: Boron DFG European Research Council Nature Communications boron atoms

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>