Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next-generation gene sequencing technology can identify invasive carp species in Chicago area waterways

18.10.2013
A project to map the microbes present in the digestive systems of fish species holds promise for monitoring the presence of Asian carp in Chicago area waterways and ultimately preventing their spread, according to a study published in Nature’s ISME Journal.

The work, funded through the U.S. Environmental Protection Agency Great Lakes Restoration Initiative, is being conducted by researchers from the University of Illinois at Urbana-Champaign and the U.S. Geological Survey (USGS).


Gizzard Shad


Silver Carp

Asian carp is a term used to refer to several invasive fish species including silver, bighead and black carp. Bighead carp and silver carp have already invaded much of the Mississippi River basin, where they compete for food with native species and dominate aquatic communities. Bighead carp and silver carp are considered one of the most severe aquatic invasive species threats facing the Great Lakes today, according to the Asian Carp Regional Coordinating Committee (ACRCC).

The ACRCC is coordinating the efforts of federal, state, local and private resource management agencies to develop an Asian carp control program. Efforts to control the fish include research to understand their physiology and behavior and how they differ from that of native species, with an eye toward developing effective monitoring and management systems.

Gut microbiota—the microbial communities present in the digestive tracts of living things—are unique, according to Wen-Tso Liu, co-author of the study and a professor of civil and environmental engineering at Illinois. For that reason, careful analysis of fish gut microbiota can reveal host-specific biomarkers shed in fish feces that indicate the presence of a specific species, promising the development of precise monitoring systems. Since fish feces are plentiful in waterways, monitoring could be easier than with techniques that have focused on detecting the DNA of the targeted species in sloughed-off skin tissue, Liu says.

The researchers used a next-generation gene sequencing technology called 16S pyrosequencing, which focuses on the 16S rRNA gene sequences, to analyze the gut microbiota of the invasive silver carp and the native gizzard shad. They successfully discovered potential biomarkers for silver carp and are working to refine them, Liu says.

In addition, the research illuminated some important similarities and differences in the species. For example, he says, gizzard shad harbor microbial communities that are 10 times more diverse than that of silver carp, showing that their digestive processes are significantly more complicated. The researchers also discovered a common food-source microbe, which proves that the fish compete for the same food.

“This is why invasive species can be dangerous,” he says. “They can eat the same food, and if the invasive species consumes more food, then the native species can be out-competed and their population will start to decline, leading to ecological disaster.”

On the strength of these findings, the researchers are beginning an extensive project to confirm their findings in the fish species in the Chicago River—approximately 50 different ones—in order to map their gut microbiota and develop biomarkers for each species. The results will lead to a precise monitoring methodology, but the benefits will likely extend further, Liu says.

“There is a lot more beyond just monitoring,” Liu says. “We will also learn more about the diversity of fish, their diets, how their diets are related to their gut microbiota and how they metabolize inside the gut.”

The scientific article, “Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish,” by Lin Ye, Jon Amberg, Duane Chapman, Mark Gaikowski, and Wen-Tso Liu, is available on the ISME Journal website.

Contact: Wen-Tso Liu, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 217/333-8442.

Mark Gaikowski, U.S. Geological Survey, 608/781-6284.

Writer: Celeste Arbogast Bragorgos, director of communications, Department of Civil and Environmental Engineering, 217/333-6955.

Illustrations: Duane Raver

Wen-Tso Liu | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>