Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Second-generation device more effective in capturing circulating tumor cells

13.10.2010
Redesigned microchip-based device provides more data, finds previously unseen CTC clusters

A redesigned version of the CTC-Chip – a microchip-based device for capturing rare circulating tumor cells (CTCs) – appears to be more effective and should be easier to manufacture than the original. Called the HB-(herringbone) Chip, the new device also may provide more comprehensive and easily accessible data from captured tumor cells.

Massachusetts General Hospital (MGH) researchers – including members of the team that developed the CTC-Chip – report the second-generation device in a Proceedings of the National Academy of Sciences paper that has been released online.

"The originally CTC-Chip worked wonderfully in a small-scale laboratory setting, but limitations arose when we attempted to increase production for larger clinical studies. The new device performs as well or better than the previous technology with several additional benefits," says Shannon Stott, PhD, of the MGH Center for Engineering in Medicine, co-lead author of the PNAS paper. "It also was able to capture something that had never been seen using either the CTC-chip or the most prevalent previous technology – small clusters of CTCs, the significance of which we need to study."

CTCs are living solid tumor cells found at extremely low levels in the bloodstream. Until the 2007 development of the CTC-chip by researchers from the MGH Cancer Center and the Center for Engineering in Medicine, it was not possible to get information from CTCs that would be useful for clinical decision making.

In the original device, patient blood samples are passed over a silicon chip covered with microscopic posts coated with an antibody that binds to most tumor cells. Not only did this design proved challenging to manufacture reliably and cost-effectively, but the smooth flow of blood around the microposts also limited the number of CTCs that came into contact with the antibody-covered surfaces. In their search to increase the capture of CTCs, the researchers found that passing samples through a chamber lined with a herringbone pattern of grooves – an approach developed elsewhere for quickly mixing independent streams of fluid – would generate a more chaotic flow that could significantly increase the number of captured cells.

The HB-Chip also can process larger-volume blood samples, increasing the ability to find rare CTCs. The microchip is mounted on a standard glass slide, which allows the use of standard pathology tests to identify cancer cells; and the device can be easily opened, giving access to CTCs for additional testing and growth in culture. Experiments comparing the HB-Chip to the CTC-chip found the new device captured more than 90 percent of cancer cells introduced into blood samples – a 25 percent improvement over the CTC-chip. Tests of samples from cancer patients found the redesigned device at least as effective as the original.

The HB-Chip also captured clusters of 4 to 12 CTCs from several patient samples but not from samples to which cancer cells had been added. No previous technology for capturing CTCs has ever found such clumps of tumor cells. "These clusters may have broken off from the original tumor, or they might represent proliferation of CTCs within the circulation," says Mehmet Toner, PhD, director of the BioMicroElectroMechanical Systems Resource Center in the MGH Center for Engineering in Medicine, the paper's senior author. "Further study of these clusters could provide valuable insight in the metastatic process."

Daniel Haber MD PhD, director of the MGH Cancer Center and a co-author of the study, says, "This new technology is a powerful platform that will enable increasingly sophisticated analyses of metastasis and support clinical research in targeted cancer therapies."

While the MGH has filed a patent for the HB-Chip, the research team will continue to develop the technology before potential licensing is explored. The study was supported by grants from Stand Up to Cancer, the Prostate Cancer Foundation, the National Institute for Biomedical Imaging and Bioengineering, the National Cancer Institute and the American Cancer Society, along with several additional funders.

Toner is the Benedict Professor of Surgery and Stott is a research fellow in Surgery at Harvard Medical School. Chia-Hsien Hsu, PhD, formerly of the MGH Center for Engineering in Medicine and now with the National Health Research Institutes of Taiwan, was co-lead author of the PNAS paper. Additional co-authors are Dina Tsukrov, Ajay Shah, George Korir, Frederick Floyd Jr., Daniel Irimia and Sunitha Nagrath, MGH Center for Engineering in Medicine; and Min Yu, David Miyamoto, Belinda Waltman, Michael Rothenberg, Malgorzata Smas, Anna Gilman, Jenna Lord, Daniel Winokur, Simeon Springer, Lecia Sequist, Richard Lee, Kurt Isselbacher and Shyamala Maheswaran, MGH Cancer Center.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $600 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Katie Marquedant | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>