Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Second-generation device more effective in capturing circulating tumor cells

13.10.2010
Redesigned microchip-based device provides more data, finds previously unseen CTC clusters

A redesigned version of the CTC-Chip – a microchip-based device for capturing rare circulating tumor cells (CTCs) – appears to be more effective and should be easier to manufacture than the original. Called the HB-(herringbone) Chip, the new device also may provide more comprehensive and easily accessible data from captured tumor cells.

Massachusetts General Hospital (MGH) researchers – including members of the team that developed the CTC-Chip – report the second-generation device in a Proceedings of the National Academy of Sciences paper that has been released online.

"The originally CTC-Chip worked wonderfully in a small-scale laboratory setting, but limitations arose when we attempted to increase production for larger clinical studies. The new device performs as well or better than the previous technology with several additional benefits," says Shannon Stott, PhD, of the MGH Center for Engineering in Medicine, co-lead author of the PNAS paper. "It also was able to capture something that had never been seen using either the CTC-chip or the most prevalent previous technology – small clusters of CTCs, the significance of which we need to study."

CTCs are living solid tumor cells found at extremely low levels in the bloodstream. Until the 2007 development of the CTC-chip by researchers from the MGH Cancer Center and the Center for Engineering in Medicine, it was not possible to get information from CTCs that would be useful for clinical decision making.

In the original device, patient blood samples are passed over a silicon chip covered with microscopic posts coated with an antibody that binds to most tumor cells. Not only did this design proved challenging to manufacture reliably and cost-effectively, but the smooth flow of blood around the microposts also limited the number of CTCs that came into contact with the antibody-covered surfaces. In their search to increase the capture of CTCs, the researchers found that passing samples through a chamber lined with a herringbone pattern of grooves – an approach developed elsewhere for quickly mixing independent streams of fluid – would generate a more chaotic flow that could significantly increase the number of captured cells.

The HB-Chip also can process larger-volume blood samples, increasing the ability to find rare CTCs. The microchip is mounted on a standard glass slide, which allows the use of standard pathology tests to identify cancer cells; and the device can be easily opened, giving access to CTCs for additional testing and growth in culture. Experiments comparing the HB-Chip to the CTC-chip found the new device captured more than 90 percent of cancer cells introduced into blood samples – a 25 percent improvement over the CTC-chip. Tests of samples from cancer patients found the redesigned device at least as effective as the original.

The HB-Chip also captured clusters of 4 to 12 CTCs from several patient samples but not from samples to which cancer cells had been added. No previous technology for capturing CTCs has ever found such clumps of tumor cells. "These clusters may have broken off from the original tumor, or they might represent proliferation of CTCs within the circulation," says Mehmet Toner, PhD, director of the BioMicroElectroMechanical Systems Resource Center in the MGH Center for Engineering in Medicine, the paper's senior author. "Further study of these clusters could provide valuable insight in the metastatic process."

Daniel Haber MD PhD, director of the MGH Cancer Center and a co-author of the study, says, "This new technology is a powerful platform that will enable increasingly sophisticated analyses of metastasis and support clinical research in targeted cancer therapies."

While the MGH has filed a patent for the HB-Chip, the research team will continue to develop the technology before potential licensing is explored. The study was supported by grants from Stand Up to Cancer, the Prostate Cancer Foundation, the National Institute for Biomedical Imaging and Bioengineering, the National Cancer Institute and the American Cancer Society, along with several additional funders.

Toner is the Benedict Professor of Surgery and Stott is a research fellow in Surgery at Harvard Medical School. Chia-Hsien Hsu, PhD, formerly of the MGH Center for Engineering in Medicine and now with the National Health Research Institutes of Taiwan, was co-lead author of the PNAS paper. Additional co-authors are Dina Tsukrov, Ajay Shah, George Korir, Frederick Floyd Jr., Daniel Irimia and Sunitha Nagrath, MGH Center for Engineering in Medicine; and Min Yu, David Miyamoto, Belinda Waltman, Michael Rothenberg, Malgorzata Smas, Anna Gilman, Jenna Lord, Daniel Winokur, Simeon Springer, Lecia Sequist, Richard Lee, Kurt Isselbacher and Shyamala Maheswaran, MGH Cancer Center.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $600 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Katie Marquedant | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>