Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Gene Variants Present Opportunities in Nutrigenomics

16.12.2008
A new study uncovers 11 gene variants associated with three blood lipids measured to determine cardiovascular disease risk: low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) and triglycerides.

The discovery opens up new opportunities for nutrigenomics researchers looking for links between diet and genetics that will optimize health and lower chronic disease risk.

“Practically all genes related to lipid levels in the bloodstream respond to changes in the diet,” says Jose M. Ordovas, PhD, one of five senior authors of the study and director of the Nutrition and Genomics Laboratory at the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University (USDA HNRCA).

“With this new knowledge, we are closer to identifying precise dietary recommendations for people at risk for cardiovascular disease. For instance, carriers of a certain variant gene could reduce their risk of disease with a low-cholesterol diet, carriers of another variant gene may benefit from the Mediterranean diet, while a high-fiber diet may be the healthiest option for carriers of yet another variant gene.”

In addition to the 11 new genes, the authors’ findings strengthen the association of 19 previously identified genes with LDL and HDL cholesterol and triglycerides. Ordovas collaborated with 60 authors, led by corresponding author Sekar Kathiresan, MD, of Massachusetts General Hospital, for the study published December 7 online in Nature Genetics December 7. The study is a meta-analysis of over 20,000 subjects in genome-wide association studies of humans in the United States and Europe with The Framingham Heart Study accounting for the largest number of samples.

“Having identified a total of 30 gene variants is a landmark in lipid research,” says Ordovas, also a professor at the Friedman School of Nutrition and Science Policy at Tufts and Tufts University School of Medicine “It suggests people can have multiple variant genes contributing to dyslipidemia, a combination of spiked LDL and triglyceride levels and extremely low HDL-cholesterol signaling cardiovascular disease risk.

“It is possible there are even more variant genes contributing to dyslipidemia, but even larger studies and more complete genomic characterization based on sequencing are necessary to provide a more complete picture, including interactions with dietary components” Ordovas adds.

Ordovas received funding from the National Heart, Lung and Blood Institute and the USDA Agricultural Research Service (ARS).

Kathiresan, S. et al. Nature Genetics. Dec. 7, 2008 (online)."Common variants at 30 loci contribute to polygenic dyslipidemia."

About Tufts University School of Nutrition

The Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy at Tufts University is the only independent school of nutrition in the United States. The school's eight centers, which focus on questions relating to famine, hunger, poverty, and communications, are renowned for the application of scientific research to national and international policy. For two decades, the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University has studied the relationship between good nutrition and good health in aging populations. Tufts research scientists work with federal agencies to establish the USDA Dietary Guidelines, the Dietary Reference Intakes, and other significant public policies.

Andrea Grossman | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>