Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene variant leads to better memory via increased brain activation

17.10.2011
Carriers of the so-called KIBRA T allele have better memories than those who don’t have this gene variant. This means we can reject the theory that the brain of a non-bearer compensates for this. This is shown by researchers from Umeå University in The Journal of Neuroscience.
In this study, KIBRA was first examined in relation to the memory performance of a group of 2,230 subjects. Just as in previous studies, carriers of the KIBRA T allele performed better than non-carriers. Then the brain activity of 83 subjects was studied with the help of fMRI. In contrast with the earlier study, higher activation of the hippocampus was observed in T carriers than in non-carriers.

Thanks to the large number of subjects in the study, the effect could also be studied in a group in which T carriers performed better (83 individuals) and in a subgroup in which the memory performance was equal between T carriers and non-carriers (63). This is especially important as differences in memory performance are regarded to be of significance in how to interpret differences in brain activation. However, in both cases, T carriers had increased hippocampus activation, which means that the effect of KIBRA on brain activation as such is not dependent on the difference in memory performance but is of importance for memory performance.

The conclusion must be that there is no support for the previous theory regarding compensatory mechanisms in non-carriers of the T allele. Instead the new findings indicate that the KIBRA gene plays a role in memory by improving the hippocampus function in carriers of the T allele.

In a study published in Science in 2006 the entire genome was screened (in a so-called Genome-wide association study) for genetic variations of importance to episodic memory (Papassotiropoulos et al., 2006). Individuals who carried the T allele (CT or TT genotype) in a common C/T polymorphism in the KIBRA gene had better episodic memory than non-carriers of the T allele (CC genotype). In the same study, brain activity was examined during a memory task in 30 subjects with the help of a magnetic camera (fMRI). It was found that non-carriers of the T allele had greater activation of the hippocampus, an area in the brain that is important for episodic memory, than did T carriers.

Since the groups had the same memory performance, the results were explained as indicating that non-carriers needed to compensate for their poorer memory function with increased activation of the hippocampus in order to reach the same level of performance as T carriers. Increased activation in the hippocampus is strongly associated with positive aspects of the memory function, and with other genes related to memory the opposite has been observed: increased hippocampus activation in carriers of a gene variant that is associated with better memory (e.g. Hariri et al., 2003). In those cases a reasonable explanation has been that the gene is important for memory via a favorable effect on the hippocampus function.

Improved memory performance in carriers of the KIBRA T allele has been verified in several subsequent studies (e.g. Bates et. al., 2009, Preuschhof et al., 2010), but since the 2006 Science article, this is the first to study KIBRA in relation to brain activation.

Reference: Karolina Kauppi, Lars-Göran Nilsson, Rolf Adolfsson, Elias Eriksson, and Lars Nyberg: KIBRA Polymorphism Is Related to Enhanced Memory and Elevated Hippocampal Processing

For more information, please contact Karolina Kauppi karolina.kauppi@physiol.umu.se , phone: +46 (0)90-786 51 86, ext. 13, mobile: +46 (0)730-43 38 26

Weitere Informationen:
http://dx.doi.org/10.1523/JNEUROSCI.3292-11.2011
The Journal of Neuroscience, October 5, 2011 • 31(40):14218 – 14222
http://en.wikipedia.org/wiki/KIBRA Read more about KIBRA
http://en.wikipedia.org/wiki/Fmri Read more about fMRI
http://en.wikipedia.org/wiki/Hippocampus Read more about hippocampus

Bertil Born | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>