Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene variant leads to better memory via increased brain activation

17.10.2011
Carriers of the so-called KIBRA T allele have better memories than those who don’t have this gene variant. This means we can reject the theory that the brain of a non-bearer compensates for this. This is shown by researchers from Umeå University in The Journal of Neuroscience.
In this study, KIBRA was first examined in relation to the memory performance of a group of 2,230 subjects. Just as in previous studies, carriers of the KIBRA T allele performed better than non-carriers. Then the brain activity of 83 subjects was studied with the help of fMRI. In contrast with the earlier study, higher activation of the hippocampus was observed in T carriers than in non-carriers.

Thanks to the large number of subjects in the study, the effect could also be studied in a group in which T carriers performed better (83 individuals) and in a subgroup in which the memory performance was equal between T carriers and non-carriers (63). This is especially important as differences in memory performance are regarded to be of significance in how to interpret differences in brain activation. However, in both cases, T carriers had increased hippocampus activation, which means that the effect of KIBRA on brain activation as such is not dependent on the difference in memory performance but is of importance for memory performance.

The conclusion must be that there is no support for the previous theory regarding compensatory mechanisms in non-carriers of the T allele. Instead the new findings indicate that the KIBRA gene plays a role in memory by improving the hippocampus function in carriers of the T allele.

In a study published in Science in 2006 the entire genome was screened (in a so-called Genome-wide association study) for genetic variations of importance to episodic memory (Papassotiropoulos et al., 2006). Individuals who carried the T allele (CT or TT genotype) in a common C/T polymorphism in the KIBRA gene had better episodic memory than non-carriers of the T allele (CC genotype). In the same study, brain activity was examined during a memory task in 30 subjects with the help of a magnetic camera (fMRI). It was found that non-carriers of the T allele had greater activation of the hippocampus, an area in the brain that is important for episodic memory, than did T carriers.

Since the groups had the same memory performance, the results were explained as indicating that non-carriers needed to compensate for their poorer memory function with increased activation of the hippocampus in order to reach the same level of performance as T carriers. Increased activation in the hippocampus is strongly associated with positive aspects of the memory function, and with other genes related to memory the opposite has been observed: increased hippocampus activation in carriers of a gene variant that is associated with better memory (e.g. Hariri et al., 2003). In those cases a reasonable explanation has been that the gene is important for memory via a favorable effect on the hippocampus function.

Improved memory performance in carriers of the KIBRA T allele has been verified in several subsequent studies (e.g. Bates et. al., 2009, Preuschhof et al., 2010), but since the 2006 Science article, this is the first to study KIBRA in relation to brain activation.

Reference: Karolina Kauppi, Lars-Göran Nilsson, Rolf Adolfsson, Elias Eriksson, and Lars Nyberg: KIBRA Polymorphism Is Related to Enhanced Memory and Elevated Hippocampal Processing

For more information, please contact Karolina Kauppi karolina.kauppi@physiol.umu.se , phone: +46 (0)90-786 51 86, ext. 13, mobile: +46 (0)730-43 38 26

Weitere Informationen:
http://dx.doi.org/10.1523/JNEUROSCI.3292-11.2011
The Journal of Neuroscience, October 5, 2011 • 31(40):14218 – 14222
http://en.wikipedia.org/wiki/KIBRA Read more about KIBRA
http://en.wikipedia.org/wiki/Fmri Read more about fMRI
http://en.wikipedia.org/wiki/Hippocampus Read more about hippocampus

Bertil Born | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>