Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene variant heightens risk of severe liver disease in cystic fibrosis

10.09.2009
Researchers at the University of North Carolina at Chapel Hill have discovered a genetic risk factor for severe liver disease in people with cystic fibrosis.

Those who carry a particular variant of the SERPINA1 gene (also known as alpha-1-antitrypsin or alpha-1-antiprotease) are five times more likely to develop cirrhosis and other liver complications than patients who carry the normal version of the gene.

The study, which appears in the Sept. 9 issue of the Journal of the American Medical Association (JAMA), could lead to earlier detection and diagnosis of cystic fibrosis liver disease and better treatment options for the patients affected by the disease. In addition, it could pave the way for similar studies in more common forms of liver disease.

"I predict that as we uncover more risk factors of liver disease in cystic fibrosis we may also find that they play a role in how rapidly people with a more common malady, such as viral hepatitis, develop liver complications (or "fibrosis")," said senior study author Michael R. Knowles, M.D., professor of pulmonary and critical care medicine at UNC.

Cystic fibrosis is the most common fatal genetic illness among Caucasians. In the disease, defects in the CFTR gene cause the lungs, intestines and pancreas to become clogged with mucus, resulting in breathing problems and other difficulties. Though every patient with cystic fibrosis carries mutations in both copies of their CFTR gene (one inherited from the mother and one from the father), symptoms can vary widely from patient to patient. For instance, about five percent of cystic fibrosis patients develop liver disease so severe it requires a liver transplant.

For the last decade, researchers have been investigating what other genetic factors might modify the effects of the disease-causing mutations in the CFTR gene, further altering the biological conditions under which the disease unfolds to either make it milder or more severe. Several genes have emerged as potential "genetic modifiers," and studies to replicate some of those findings have recently been accomplished.

In this study, the UNC researchers collaborated with an international team of scientists to compile the largest number of samples ever from cystic fibrosis patients with severe liver disease. The study was initially conducted in 124 cystic fibrosis patients with severe liver disease and 843 cystic fibrosis patients without liver disease. The team evaluated nine sequence variants in five genes that previous studies had suggested might be associated with liver disease.

They found that more cystic fibrosis patients with liver disease had a particular version of the SERPINA1 gene -- called the Z allele – than patients without liver disease, indicating that the gene variant plays a role in the development of this ailment. The researchers confirmed their results in a separate set of cystic fibrosis patients, 136 with liver disease and 1088 without.

According to lead study author Jaclyn R. Bartlett, Ph.D., discovering such risk factors will enable clinicians to identify cystic fibrosis patients who may be predisposed to develop liver disease. "We also hope that further research will show how the presence of this particular gene affects the liver on a molecular level in cystic fibrosis patients," said Bartlett, a research associate scientist at UNC.

Aided by their international collaborators, the researchers are now searching for genetic modifiers associated with other complications of cystic fibrosis, including lung disease, intestinal obstruction and diabetes.

Funding for the studies led at UNC came from the Cystic Fibrosis Foundation and the National Institutes of Health. Study co-authors from UNC include Kenneth J. Friedman, Ph.D., former research assistant professor of pathology; Rhonda G. Pace, research specialist; William B. Hannah, medical student; Yunfei Wang, graduate student; Fei Zou, Ph.D., associate professor of biostatistics; Lawrence M. Silverman, Ph.D., former professor of pathology and laboratory medicine; Fred A. Wright, Ph.D., professor of biostatistics; and Ethan M. Lange, Ph.D., assistant professor of genetics.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water world

20.11.2017 | Life Sciences

Less is more to produce top-notch 2D materials

20.11.2017 | Materials Sciences

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>