Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene variant heightens risk of severe liver disease in cystic fibrosis

Researchers at the University of North Carolina at Chapel Hill have discovered a genetic risk factor for severe liver disease in people with cystic fibrosis.

Those who carry a particular variant of the SERPINA1 gene (also known as alpha-1-antitrypsin or alpha-1-antiprotease) are five times more likely to develop cirrhosis and other liver complications than patients who carry the normal version of the gene.

The study, which appears in the Sept. 9 issue of the Journal of the American Medical Association (JAMA), could lead to earlier detection and diagnosis of cystic fibrosis liver disease and better treatment options for the patients affected by the disease. In addition, it could pave the way for similar studies in more common forms of liver disease.

"I predict that as we uncover more risk factors of liver disease in cystic fibrosis we may also find that they play a role in how rapidly people with a more common malady, such as viral hepatitis, develop liver complications (or "fibrosis")," said senior study author Michael R. Knowles, M.D., professor of pulmonary and critical care medicine at UNC.

Cystic fibrosis is the most common fatal genetic illness among Caucasians. In the disease, defects in the CFTR gene cause the lungs, intestines and pancreas to become clogged with mucus, resulting in breathing problems and other difficulties. Though every patient with cystic fibrosis carries mutations in both copies of their CFTR gene (one inherited from the mother and one from the father), symptoms can vary widely from patient to patient. For instance, about five percent of cystic fibrosis patients develop liver disease so severe it requires a liver transplant.

For the last decade, researchers have been investigating what other genetic factors might modify the effects of the disease-causing mutations in the CFTR gene, further altering the biological conditions under which the disease unfolds to either make it milder or more severe. Several genes have emerged as potential "genetic modifiers," and studies to replicate some of those findings have recently been accomplished.

In this study, the UNC researchers collaborated with an international team of scientists to compile the largest number of samples ever from cystic fibrosis patients with severe liver disease. The study was initially conducted in 124 cystic fibrosis patients with severe liver disease and 843 cystic fibrosis patients without liver disease. The team evaluated nine sequence variants in five genes that previous studies had suggested might be associated with liver disease.

They found that more cystic fibrosis patients with liver disease had a particular version of the SERPINA1 gene -- called the Z allele – than patients without liver disease, indicating that the gene variant plays a role in the development of this ailment. The researchers confirmed their results in a separate set of cystic fibrosis patients, 136 with liver disease and 1088 without.

According to lead study author Jaclyn R. Bartlett, Ph.D., discovering such risk factors will enable clinicians to identify cystic fibrosis patients who may be predisposed to develop liver disease. "We also hope that further research will show how the presence of this particular gene affects the liver on a molecular level in cystic fibrosis patients," said Bartlett, a research associate scientist at UNC.

Aided by their international collaborators, the researchers are now searching for genetic modifiers associated with other complications of cystic fibrosis, including lung disease, intestinal obstruction and diabetes.

Funding for the studies led at UNC came from the Cystic Fibrosis Foundation and the National Institutes of Health. Study co-authors from UNC include Kenneth J. Friedman, Ph.D., former research assistant professor of pathology; Rhonda G. Pace, research specialist; William B. Hannah, medical student; Yunfei Wang, graduate student; Fei Zou, Ph.D., associate professor of biostatistics; Lawrence M. Silverman, Ph.D., former professor of pathology and laboratory medicine; Fred A. Wright, Ph.D., professor of biostatistics; and Ethan M. Lange, Ph.D., assistant professor of genetics.

Les Lang | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>