Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel gene variant found in severe childhood asthma

CHOP genomics expert co-leads study, points to role in cell signaling, immune response

An international scientific team has discovered a gene associated with a high risk of severe childhood asthma. The specific gene variant may be an actual cause of this form of asthma, a leading cause of hospitalization in young children.

"Because asthma is a complex disease, with multiple interacting causes, we concentrated on a specific phenotype—severe, recurrent asthma occurring between ages two and six," said co-lead author of the study, Hakon Hakonarson, M.D., Ph.D., director of the Center for Applied Genomics at The Children's Hospital of Philadelphia (CHOP). "Identifying a risk susceptibility gene linked to this phenotype may lead to more effective, targeted treatments for this type of childhood asthma."

The study, published today in Nature Genetics, includes collaborators from centers in five countries. The corresponding author, Klaus Bonnelykke, M.D., Ph.D., is from the University of Copenhagen in Denmark. Hakonarson's collaborators from CHOP are Patrick Sleiman, Ph.D., and Michael March, Ph.D.

The study team performed a genome-wide association study (GWAS) on DNA from Danish national health registries and the Danish National Screening Biobank. In the discovery phase of their study, they compared genomes from 1,173 children aged 2 to 6 years from the Copenhagen Prospective Study on Asthma in Childhood (COSPAC) with genomes from 2,522 adult and pediatric control subjects without asthma.

In addition to finding further evidence for four genes previously implicated as asthma susceptibility genes, the researchers identified a novel gene, CDHR3, which is particularly active in epithelial cells lining the surfaces of airways. The study team then replicated their findings using data from other children of both European and non-European ancestry.

"Asthma researchers have been increasingly interested in the role of the airway epithelium in the development of asthma," said Hakonarson, a pediatric pulmonologist. "Abnormalities in the epithelial cells may increase a patient's risk to environmental triggers by exaggerating immune responses and making the airway overreact. Because the CDHR3 gene is related to a family of proteins involved in cell adhesion and cell-to-cell interaction, it is plausible that variations in this gene may disrupt normal functioning in these airway cells, and make a child vulnerable to asthma."

Hakonarson said that the current findings are consistent with previous investigations by CHOP's Center for Applied Genomics, suggesting that other genes linked to childhood asthma play a role in oversensitive immune reactions.

Hakonarson added that further studies are needed to better understand how the CDHR3 gene may function in asthma, with the eventual goal of using such knowledge to design better treatments for children with severe cases of this disease.

Support for this study came from the Danish Medical Research Council and an Institutional Development Fund grant from The Children's Hospital of Philadelphia.

"A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations," Nature Genetics, published online Nov. 17, 2013.

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program receives the highest amount of National Institutes of Health funding among all U.S. children's hospitals. In addition, its unique family-centered care and public service programs have brought the 527-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit

John Ascenzi | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>