Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene that causes tumor disorder linked to increased breast cancer risk

27.11.2012
Johns Hopkins researchers call for early and frequent screening of women with neurofibromatosis-1

New Johns Hopkins research showing a more than four-fold increase in the incidence of breast cancer in women with neurofibromatosis-1 (NF1) adds to growing evidence that women with this rare genetic disorder may benefit from early breast cancer screening with mammograms beginning at age 40, and manual breast exams as early as adolescence.

In a small study of 126 women with NF1 at the Johns Hopkins Comprehensive Neurofibromatosis Center, the Johns Hopkins scientists identified four cases of breast cancer. The study showed a four-fold increased risk for breast cancer in women with NF1 compared to the general population of women under the age of 50. NF1 is characterized by the uncontrolled growth of mostly non-cancerous tumors along the body's nerves, often resulting in pain and disfigurement.

Beyond their implications for breast cancer screening guidelines for women with NF1, the findings may also shed light on the origins and nature of breast cancer in those without the syndrome, the researchers say, because other recent studies suggest that some women without neurofibromatosis-1 had breast cancers fueled primarily by an NF1 mutation. A recent study, for example, described in the journal Nature, estimated that 3 percent of all breast cancers in the general population are caused by NF1 mutations that arise spontaneously.

"When we study rare populations intensively, we learn things that also may be factors in very common diseases, like breast cancer," says Jaishri Blakeley, M.D., an assistant professor of neurology, neurosurgery and oncology at the Johns Hopkins University School of Medicine, and leader of the new study described online in the American Journal of Medical Genetics. "What we learn from this population will help us learn more about the subtleties of different types of breast cancers."

The major implication of their study, Blakeley says, is the need for medical specialty societies to develop guidelines recognizing NF1 patients under the age of 50 as a group at increased risk for breast cancer. Guidelines developed by medical societies would change clinical practice and, just as importantly, encourage insurance companies to pay for potentially lifesaving screening in younger women with the debilitating disease, the researchers add.

"There are guidelines for how to care for women at high risk for breast cancer because of a family history of the disease, or because they have the BRCA genetic mutations, but there are no guidelines for women with NF1," Blakeley says. "Women with NF1 haven't even been on the radar as a high-risk population. Now that we increasingly understand the risk, we have to make sure doctors are talking to their patients about the benefits and risks of early screening."

Blakeley, director of the Johns Hopkins Comprehensive Neurofibromatosis Center, says she recommends that her NF1 patients get a manual breast exam from a physician annually, beginning in their teens. She recommends mammograms beginning at age 40, 10 years earlier than current National Cancer Institute guidelines for the general population. Research has not yet determined the ideal time for NF1 patients to get their first mammograms; some physicians suggest age 30, the age recommended for women with BRCA mutations. Blakeley says that because radiation exposure can sometimes trigger benign tumors to change to malignant tumors in NF1 patients, she worries about an extra 10 years of radiation exposure due to mammography.

The normal Nf1 gene is one of a number of so-called tumor suppressor genes. Roughly one in 3,000 Americans (equal numbers of males and females) has a mutated copy that no longer functions properly and allows tumors to grow unchecked. About half of people with NF1 inherit an Nf1 gene mutation from a parent, and the other half are the first in their family to have an Nf1 gene mutation.

In people with NF1, tumors often are on, or just below, the skin and can be disfiguring and painful, depending on where they are located. They can also appear in the brain and large nerves of the body, resulting in neurologic injury. Sometimes the tumors are surgically removed or treated with chemotherapy or radiation. However, these interventions can be risky and do not result in a cure, so many of those affected must live with the tumors and the disfigurement or pain that may accompany them, says Amanda Bergner, M.S., CGC, an assistant professor of genetics and neurology at Johns Hopkins who contributed to the research.

The study by Blakeley and Bergner, along with Sara Madanikia and Xiaobu Ye, M.D., all of Johns Hopkins, confirms data in another study published in the same issue of the journal, and two European studies published in recent years. An editorial by D. Gareth Evans of the University of Manchester, accompanying their article, also calls for the development of aggressive screening guidelines for women with NF1.

The research was supported by the Johns Hopkins Predoctoral Clinical Research Training Program, grant number 1TL1RR-025007, funded by the National Center for Research Resources, part of the National Institutes of Health.

For more information:

http://www.hopkinsmedicine.org/neurology_neurosurgery/specialty_areas/
neurofibromatosis/experts/team_member_profile/91D471E70E7CE8F3D8F322AF31081C29
/Jaishri_Blakeley
http://www.hopkinsmedicine.org/neurology_neurosurgery/specialty_areas/
neurofibromatosis/

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>