Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene that causes tumor disorder linked to increased breast cancer risk

Johns Hopkins researchers call for early and frequent screening of women with neurofibromatosis-1

New Johns Hopkins research showing a more than four-fold increase in the incidence of breast cancer in women with neurofibromatosis-1 (NF1) adds to growing evidence that women with this rare genetic disorder may benefit from early breast cancer screening with mammograms beginning at age 40, and manual breast exams as early as adolescence.

In a small study of 126 women with NF1 at the Johns Hopkins Comprehensive Neurofibromatosis Center, the Johns Hopkins scientists identified four cases of breast cancer. The study showed a four-fold increased risk for breast cancer in women with NF1 compared to the general population of women under the age of 50. NF1 is characterized by the uncontrolled growth of mostly non-cancerous tumors along the body's nerves, often resulting in pain and disfigurement.

Beyond their implications for breast cancer screening guidelines for women with NF1, the findings may also shed light on the origins and nature of breast cancer in those without the syndrome, the researchers say, because other recent studies suggest that some women without neurofibromatosis-1 had breast cancers fueled primarily by an NF1 mutation. A recent study, for example, described in the journal Nature, estimated that 3 percent of all breast cancers in the general population are caused by NF1 mutations that arise spontaneously.

"When we study rare populations intensively, we learn things that also may be factors in very common diseases, like breast cancer," says Jaishri Blakeley, M.D., an assistant professor of neurology, neurosurgery and oncology at the Johns Hopkins University School of Medicine, and leader of the new study described online in the American Journal of Medical Genetics. "What we learn from this population will help us learn more about the subtleties of different types of breast cancers."

The major implication of their study, Blakeley says, is the need for medical specialty societies to develop guidelines recognizing NF1 patients under the age of 50 as a group at increased risk for breast cancer. Guidelines developed by medical societies would change clinical practice and, just as importantly, encourage insurance companies to pay for potentially lifesaving screening in younger women with the debilitating disease, the researchers add.

"There are guidelines for how to care for women at high risk for breast cancer because of a family history of the disease, or because they have the BRCA genetic mutations, but there are no guidelines for women with NF1," Blakeley says. "Women with NF1 haven't even been on the radar as a high-risk population. Now that we increasingly understand the risk, we have to make sure doctors are talking to their patients about the benefits and risks of early screening."

Blakeley, director of the Johns Hopkins Comprehensive Neurofibromatosis Center, says she recommends that her NF1 patients get a manual breast exam from a physician annually, beginning in their teens. She recommends mammograms beginning at age 40, 10 years earlier than current National Cancer Institute guidelines for the general population. Research has not yet determined the ideal time for NF1 patients to get their first mammograms; some physicians suggest age 30, the age recommended for women with BRCA mutations. Blakeley says that because radiation exposure can sometimes trigger benign tumors to change to malignant tumors in NF1 patients, she worries about an extra 10 years of radiation exposure due to mammography.

The normal Nf1 gene is one of a number of so-called tumor suppressor genes. Roughly one in 3,000 Americans (equal numbers of males and females) has a mutated copy that no longer functions properly and allows tumors to grow unchecked. About half of people with NF1 inherit an Nf1 gene mutation from a parent, and the other half are the first in their family to have an Nf1 gene mutation.

In people with NF1, tumors often are on, or just below, the skin and can be disfiguring and painful, depending on where they are located. They can also appear in the brain and large nerves of the body, resulting in neurologic injury. Sometimes the tumors are surgically removed or treated with chemotherapy or radiation. However, these interventions can be risky and do not result in a cure, so many of those affected must live with the tumors and the disfigurement or pain that may accompany them, says Amanda Bergner, M.S., CGC, an assistant professor of genetics and neurology at Johns Hopkins who contributed to the research.

The study by Blakeley and Bergner, along with Sara Madanikia and Xiaobu Ye, M.D., all of Johns Hopkins, confirms data in another study published in the same issue of the journal, and two European studies published in recent years. An editorial by D. Gareth Evans of the University of Manchester, accompanying their article, also calls for the development of aggressive screening guidelines for women with NF1.

The research was supported by the Johns Hopkins Predoctoral Clinical Research Training Program, grant number 1TL1RR-025007, funded by the National Center for Research Resources, part of the National Institutes of Health.

For more information:

Stephanie Desmon | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>