Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene transfer strategy shows promise for limb girdle and other muscular dystrophies

09.07.2012
The challenge of treating patients with genetic disorders in which a single mutated gene is simply too large to be replaced using traditional gene therapy techniques may soon be a thing of the past.

A Nationwide Children's Hospital study describes a new gene therapy approach capable of delivering full-length versions of large genes and improving skeletal muscle function. The strategy may hold new hope for treating dysferlinopathies and other muscular dystrophies.

A group of untreatable muscle disorders known as dysferlinopathies are caused by mutations in the dysferlin gene. Patients with these disorders, including limb girdle muscular dystrophy type 2B, are typically diagnosed in their early twenties. Approximately one-third will become wheelchair dependent by their mid-30s.

Gene therapy using adeno-associated virus (AAV) to deliver genes to cells has been pursued as an option for some patients with muscular dystrophy. However, AAV's packaging limitations have served as obstacles in using gene therapy to deliver large genes like dysferlin. Scientists in the past have attempted to work around AAV's packaging limitations by inserting a small version of large genes into the viral vector to induce gene expression. Some have also used more than one viral vector at a time to deliver a large gene. However, micro and mini versions of large genes don't always have the power of full-length gene expression and an increased viral load can lead to negative side effects.

"We have had success in the clinic using AAV gene therapy with limb girdle muscular dystrophy type 2D, which is caused by mutations in the alpha-sarcoglycan gene," said Louise Rodino-Klapac, PhD, principal investigator in the Center for Gene Therapy at The Research Institute of Nationwide Children's Hospital. "However, the dysferlin gene is very large, about six times larger than the alpha-sarcoglycan gene and can't fit into a traditional AAV vector."

A 2008 study identified AAV5, an AAV serotype that could package large transcripts. "This made us wonder whether it could be used for gene replacement requiring inserts as large as the dysferlin gene," said Dr. Rodino-Klapac.

In their 2012 study appearing in PLoS ONE, Dr. Rodino-Klapac's team used AAV5 to package a full-length, intact dysferlin gene and directly deliver it to the diaphragm of dysferlin-deficient mice. They also injected the leg muscles of dysferlin-deficient mice using both intramuscular and vascular approaches to further evaluate whether the gene delivery could improve skeletal muscle function.

They found that both the intravascular and intramuscular delivery approaches led to full-length, intact dysferlin gene expression in the leg and diaphragm muscle cells of the mice. More importantly, they saw that the newly-restored dysferlin repaired membrane deficits previously seen in the dysferlin-deficient mice.

"Our findings demonstrate highly favorable results with full restoration of dysferlin without compromise in function," said Dr. Rodino-Klapac. "With regard to neuromuscular diseases, these studies provide new perspective for conditions caused by mutations of large genes. Duchenne muscular dystrophy is the most common severe childhood muscular dystrophy and would seem to benefit from expression of the larger transcripts than mini- and micro-dystrophins that only partially restore physiologic function in mouse models of the disease."

Dr. Rodino-Klapac and her team are currently defining a path for a dysferlin clinical gene therapy trial. "We have shown that AAV5-dysferlin delivery is a very promising therapeutic approach that could restore functional deficits in dysferlinopathy patients," she says.

Grose WE, Clark KR, Griffin D, Malik V, Shontz KM, Montgomery CL, Lewis S, Brown RH Jr, Janssen PM, Mendell JR, Rodino-Klapac LR. Homologous Recombination Mediates Functional Recovery of Dysferlin Deficiency following AAV5 Gene Transfer. PLoS One. 2012;7(6):e39233. Epub 2012 Jun 15.

For more information on the Center for Gene Therapy, visit http://www.nationwidechildrens.org/center-for-gene-therapy
For more information on The Research Institute, visit http://www.nationwidechildrens.org/pediatric-research

For more information on Dr. Louise Rodino-Klapac, visit http://www.nationwidechildrens.org/louise-rodino-klapac

Erin Pope | EurekAlert!
Further information:
http://www.nationwidechildrens.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>