Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Transfer Keeps Bacteria Fit

16.06.2017

Researchers at the University of Basel’s Biozentrum have discovered that Bartonella bacteria exchange genes efficiently using a domesticated virus encoded in their genome. As the findings published in «Cell Systems» demonstrate, the exchange of genetic material only takes place between bacteria with a high level of fitness. The gene transfer between pathogens prevents the accumulation of genetic defects, promotes the spread of beneficial gene mutations and thus keeps the bacteria fit.

Bartonella are bacteria that can cause diverse infectious diseases in man, such as cat-scratch disease. In order to prevent the accumulation of mutations during the infection cycle, pathogens require efficient DNA repair mechanisms. Therefore, the sharing of intact genes within bacterial populations plays an important role, as errors in the gene pool can be eliminated and the genetic material kept fresh.


The bacteria Bartonella henselae.

University of Basel, Biozentrum

In collaboration with the ETH Zurich Prof. Christoph Dehio’s team at the Biozentrum, University of Basel, has discovered that for the efficient exchange of genes Bartonella use virus-like particles, so-called gene transfer agents. They also demonstrated that damaged bacteria are excluded from this gene transfer process and so it is much less likely that detrimental genetic material is spread in the population.

Gene transfer using domesticated viruses

Gene transfer agents evolved as derivatives of bacteriophages, viruses that attack bacteria. However, other than bacteriophages packing their own genome they package random pieces of the bacterial genome and transfer these to other bacteria. Using these domesticated bacteriophages, bacterial populations can efficiently exchange DNA fragments. This type of gene transfer, however, comes at a high price: The fraction of the bacterial population that produces gene transfer agents dies while releasing the particles. But what are the advantages for the surviving bacterial population that takes up the gene fragments?

As the bacterial populations grow, bacteria divide regularly. For each cell division, the genome is duplicated and passed on to the two daughter cells. Errors creep in regularly during this recurrent process. Only efficient repair mechanisms, including the exchange of flawless genetic material, can prevent the accumulation of genetic aberrations. In short: The genetic material is kept fresh.

“A further evolutionary advantage of gene transfer agents is the spread of new genetic material throughout the bacterial population, endowing it with new properties. This may also include antibiotic resistance”, explains Dehio. But this survival advantage for bacteria means, on the other hand, a threat to humans.

Only the fittest bacteria transfer genes

It has long remained unknown how the exchange of genetic material between bacteria using gene transfer agents works and how it is regulated. In their study, Dehio’s team has comprehensively identified the involved components. In particular, stress signals are key players in this process. Only bacteria in good condition exchange genetic material, whereas bacteria stressed as a result of unfavorable gene mutations do not transfer genes.

“In other words only the fittest and genetically most promising bacteria in a population divide and exchange genetic material. In genetically weakened and therefore stressed bacteria this mechanism is switched off”, says Maxime Québatte, the first author of the study.

The sharing of intact genetic material endows the fittest part of a bacterial population to persist in the host and to be passed onto new hosts successfully. This knowledge may, in turn, be used to develop new strategies to combat infections caused by the pathogen Bartonella.

Original source

Maxime Québatte, Matthias Christen, Alexander Harms, Jonas Körner, Beat Christen, and Christoph Dehio
Gene transfer agent promotes evolvability within the fittest subpopulation of a bacterial pathogen
Cell Systems (2017), doi: 10.1016/j.cels.2017.05.011

Further information

Prof. Dr. Christoph Dehio, University of Basel, Biozentrum, Tel. +41 61 207 21 40, email: christoph.dehio@unibas.ch
Heike Sacher, University of Basel, Biozentrum, Communications, Tel. +41 61 207 14 49, email: heike.sacher@unibas.ch

Heike Sacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>