Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Transfer Keeps Bacteria Fit

16.06.2017

Researchers at the University of Basel’s Biozentrum have discovered that Bartonella bacteria exchange genes efficiently using a domesticated virus encoded in their genome. As the findings published in «Cell Systems» demonstrate, the exchange of genetic material only takes place between bacteria with a high level of fitness. The gene transfer between pathogens prevents the accumulation of genetic defects, promotes the spread of beneficial gene mutations and thus keeps the bacteria fit.

Bartonella are bacteria that can cause diverse infectious diseases in man, such as cat-scratch disease. In order to prevent the accumulation of mutations during the infection cycle, pathogens require efficient DNA repair mechanisms. Therefore, the sharing of intact genes within bacterial populations plays an important role, as errors in the gene pool can be eliminated and the genetic material kept fresh.


The bacteria Bartonella henselae.

University of Basel, Biozentrum

In collaboration with the ETH Zurich Prof. Christoph Dehio’s team at the Biozentrum, University of Basel, has discovered that for the efficient exchange of genes Bartonella use virus-like particles, so-called gene transfer agents. They also demonstrated that damaged bacteria are excluded from this gene transfer process and so it is much less likely that detrimental genetic material is spread in the population.

Gene transfer using domesticated viruses

Gene transfer agents evolved as derivatives of bacteriophages, viruses that attack bacteria. However, other than bacteriophages packing their own genome they package random pieces of the bacterial genome and transfer these to other bacteria. Using these domesticated bacteriophages, bacterial populations can efficiently exchange DNA fragments. This type of gene transfer, however, comes at a high price: The fraction of the bacterial population that produces gene transfer agents dies while releasing the particles. But what are the advantages for the surviving bacterial population that takes up the gene fragments?

As the bacterial populations grow, bacteria divide regularly. For each cell division, the genome is duplicated and passed on to the two daughter cells. Errors creep in regularly during this recurrent process. Only efficient repair mechanisms, including the exchange of flawless genetic material, can prevent the accumulation of genetic aberrations. In short: The genetic material is kept fresh.

“A further evolutionary advantage of gene transfer agents is the spread of new genetic material throughout the bacterial population, endowing it with new properties. This may also include antibiotic resistance”, explains Dehio. But this survival advantage for bacteria means, on the other hand, a threat to humans.

Only the fittest bacteria transfer genes

It has long remained unknown how the exchange of genetic material between bacteria using gene transfer agents works and how it is regulated. In their study, Dehio’s team has comprehensively identified the involved components. In particular, stress signals are key players in this process. Only bacteria in good condition exchange genetic material, whereas bacteria stressed as a result of unfavorable gene mutations do not transfer genes.

“In other words only the fittest and genetically most promising bacteria in a population divide and exchange genetic material. In genetically weakened and therefore stressed bacteria this mechanism is switched off”, says Maxime Québatte, the first author of the study.

The sharing of intact genetic material endows the fittest part of a bacterial population to persist in the host and to be passed onto new hosts successfully. This knowledge may, in turn, be used to develop new strategies to combat infections caused by the pathogen Bartonella.

Original source

Maxime Québatte, Matthias Christen, Alexander Harms, Jonas Körner, Beat Christen, and Christoph Dehio
Gene transfer agent promotes evolvability within the fittest subpopulation of a bacterial pathogen
Cell Systems (2017), doi: 10.1016/j.cels.2017.05.011

Further information

Prof. Dr. Christoph Dehio, University of Basel, Biozentrum, Tel. +41 61 207 21 40, email: christoph.dehio@unibas.ch
Heike Sacher, University of Basel, Biozentrum, Communications, Tel. +41 61 207 14 49, email: heike.sacher@unibas.ch

Heike Sacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Discovery could lead to sustainable ethanol made from carbon dioxide
20.06.2017 | Stanford University

nachricht Regulation of blood coagulation: Molecular switches guide blood forming cells
20.06.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

Im Focus: Graphene electrodes offer new functionalities in molecular electronic nanodevices

An international team of researchers led by the University of Bern and the National Physical Laboratory (NPL) has revealed a new way to tune the functionality of next-generation molecular electronic devices using graphene. The results could be exploited to develop smaller, higher-performance devices for use in a range of applications including molecular sensing, flexible electronics, and energy conversion and storage, as well as robust measurement setups for resistance standards.

The field of nanoscale molecular electronics aims to exploit individual molecules as the building blocks for electronic devices, to improve functionality and...

Im Focus: Quantum nanoscope

Seeing electrons surfing the waves of light on graphene

Researchers have studied how light can be used to "see" the quantum nature of an electronic material. They managed to do that by capturing light in a net of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Deep-sea animals "eat" oil: One man's meat is another man's poison

20.06.2017 | Life Sciences

Discovery could lead to sustainable ethanol made from carbon dioxide

20.06.2017 | Life Sciences

Call for nominations of outstanding catalysis researchers for the Otto Roelen Medal 2018

20.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>