Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy to treat epilepsy a step closer

25.08.2010
Current antiepileptic drugs (AEDs) have many side-effects, among others slowing down brain activity, which in turn reduces patients’ ability to react.

These side-effects could be eliminated if genes that counteract seizures could be introduced into the brain. Professor Merab Kokaia at Lund University in Sweden has obtained promising results in animal experiments.

Epilepsy is a fairly common condition, affecting around 1 in every 100 people in Sweden. It increases the risk of depression, sudden death, injury and disability. Today’s medication not only has side-effects, it is also not sufficiently effective. A large proportion of epilepsy patients are not helped by the drugs and cannot be treated with brain surgery either.

Research in recent years has shown that the brain tries to counteract seizures. One of the ways it does this is by increasing levels of a protein-like molecule called neuropeptide Y and the expression of certain receptors for it.

Both Merab Kokaia’s research group and others have previously shown that gene therapy can increase levels of neuropeptide Y in the brain. The Lund researchers are now also the first group in the world to introduce genes that increase the expression of certain receptors for neuropeptides in the brain.

“Neuropeptide Y affects many receptors on the cells in the brain. Some of these increase the risk of seizures and thus have the opposite effect to that which we want to achieve. Therefore it is not ideal to only aim for high levels of neuropeptide Y; we should also ensure that the neuropeptide activates the right receptors”, says Merab Kokaia.

He has tested the combined neuropeptide and receptor gene therapy on a rat model of epilepsy and found that the seizures were strongly suppressed. The results have recently been published in the prestigious journal BRAIN.

The genes were introduced into the animals’ brains via harmless viruses. These were injected into the specific parts of the brain that are affected by an epileptic condition.

“If the method works on humans, a single treatment would be sufficient, rather than lifelong medication. Unlike current AEDs, such treatment would also only affect the parts of the brain concerned”, explains Merab Kokaia.

In the USA the Food and Drug Administration (FDA) is now considering an application to test gene therapy for epilepsy on humans. However, this application only concerns introducing genes to increase expression of neuropeptide Y, whereas the Lund group’s findings indicate that genes that increase the expression of the right receptors would be at least as important.

The article is entitled ‘Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures’ and is available at http://brain.oxfordjournals.org/ (enter ‘Kokaia’ in the search box).

Merab Kokaia can be contacted by telephone, +46 46 222 05 47, mobile +46 706 620899, or by email, merab.kokaia@med.lu.se

Megan Grindlay | idw
Further information:
http://brain.oxfordjournals.org/
http://www.vr.se

Further reports about: AEDs Brain Activity Epilepsy antiepileptic drugs gene therapy neuropeptide Y

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>