Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Gene Therapy Technique on Induced Pluripotent Stem Cells Holds Promise in Treating Immune System Disease

29.04.2011
Researchers have developed an effective technique that uses gene therapy on stem cells to correct chronic granulomatous disease (CGD) in cell culture, which could eventually serve as a treatment for this rare, inherited immune disorder, according to a study published in Blood, the Journal of the American Society of Hematology.

CGD prevents neutrophils, a type of white blood cell of the immune system, from making hydrogen peroxide, an essential defense against life-threatening bacterial and fungal infections. Most cases of CGD are a result of a mutation on the X chromosome, a type of CGD that is called “X-linked” (X-CGD).

While antibiotics can treat infections caused by X-CGD, they do not cure the disease itself. Patients with X-CGD can be cured with a hematopoietic stem cell (HSC) transplant from healthy bone marrow; however, finding a compatible donor is difficult. Even with a suitable donor, patients are at risk of developing graft-versus-host disease (GVHD), a serious and often deadly post-transplant complication that occurs when newly transplanted donor cells recognize a recipient’s own cells as foreign and attack the patient’s body.

Another treatment option under development for X-CGD is gene therapy, a technique for correcting defective genes responsible for disease development that involves manipulation of genetic material within an individual’s blood-forming stem cells using genetically engineered viruses. However, this gene therapy has so far proved to be inefficient at correcting X-CGD. In addition, these engineered viruses insert new genetic material at random locations in the blood-forming stem cell genome, putting patients at significantly higher risk for developing genetic mutations that may eventually lead to serious blood disorders, including blood cancer.

In order to develop a more effective and safer gene therapy for X-CGD, researchers from the National Institute of Allergy and Infectious Disease (NIAID) at the National Institutes of Health (NIH) and The Johns Hopkins University School of Medicine embarked on a study using a more precise method for performing gene therapy that did not use viruses for the gene correction. Researchers removed adult stem cells from the bone marrow of a patient with X-CGD and genetically reprogrammed them to become induced pluripotent stem cells (iPS cells). Like embryonic stem cells, these patient-specific iPS cells can be grown and manipulated indefinitely in culture while retaining their capacity to differentiate into any cell type of the body, including HSCs.

“HSCs that are derived from gene corrected iPS cells are tissue-compatible with the patient and may create a way for the patient’s own cells to be used in a transplant to cure the disease, removing the risk of GVHD or the need to find a compatible donor,” said Harry L. Malech, MD, senior study author, Chief of the Laboratory of Host Defenses and Head of the Genetic Immunotherapy Section of NIAID at the NIH. “However, turning iPS cells into a large number of HSCs that are efficently transplantable remains technically difficult; therefore, our study aimed at demonstrating that it is possible to differentiate gene corrected iPS cells into a large number of corrected neutrophils. These corrected neutrophils, grown in culture, are tissue-compatible with the patient and may be used to manage the life-threatening infections that are caused by the disease.”

Typically, iPS cells from a patient with an inherited disorder do not express disease traits, despite the fact that the iPS cell genome contains the expected mutation. The researchers were able to prove, in culture, that iPS cells from a patient with X-CGD could be differentiated into mature neutrophils that failed to produce hydrogen peroxide, thus expressing the disease trait. This is the first study in which the disease phenotype has been reproduced in neutrophils differentiated from X-CGD patient-specific iPS cells.

After discovering that the disease could be reproduced in cell culture, the researchers then sought to correct the disease and produce healthy neutrophils in culture. They used synthetic proteins called zinc finger nucleases (ZFNs) to target a corrective gene at a specifically defined location in the genome of the X-CGD iPS cells. The iPS cells were then carefully screened to identify those containing a single copy of the corrective gene properly inserted only at the safe site. The researchers observed that some of the gene-corrected iPS cells could differentiate into neutrophils that produced normal levels of hydrogen peroxide, effectively “correcting” the disease.

“This is the first study that uses ZFNs in specific targeting gene transfer to correct X-CGD,” said Dr. Malech. “Demonstrating that this approach to gene therapy works with a single-gene disease such as X-CGD means that the results from our study offer not only a potential treatment for this disease, but more importantly, a technique by which other single-gene diseases can be corrected using specifically targeted gene therapy on iPS cells."

Reporters who wish to receive a copy of the study or arrange an interview with the authors may contact Claire Gwayi-Chore at 202-776-0544 or cgwayi-chore@hematology.org.

The American Society of Hematology is the world’s largest professional society concerned with the causes and treatment of blood disorders. Its mission is to further the understanding, diagnosis, treatment, and prevention of disorders affecting blood, bone marrow, and the immunologic, hemostatic, and vascular systems by promoting research, clinical care, education, training, and advocacy in hematology. The official journal of ASH is Blood, the most cited peer-reviewed publication in the field, which is available weekly in print and online.

Claire Gwayi-Chore | EurekAlert!
Further information:
http://www.hematology.org/News/2011/6600.aspx

More articles from Life Sciences:

nachricht Plant escape from waterlogging
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Study suggests oysters offer hot spot for reducing nutrient pollution
17.10.2017 | Virginia Institute of Marine Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>