Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Gene Therapy Technique on Induced Pluripotent Stem Cells Holds Promise in Treating Immune System Disease

29.04.2011
Researchers have developed an effective technique that uses gene therapy on stem cells to correct chronic granulomatous disease (CGD) in cell culture, which could eventually serve as a treatment for this rare, inherited immune disorder, according to a study published in Blood, the Journal of the American Society of Hematology.

CGD prevents neutrophils, a type of white blood cell of the immune system, from making hydrogen peroxide, an essential defense against life-threatening bacterial and fungal infections. Most cases of CGD are a result of a mutation on the X chromosome, a type of CGD that is called “X-linked” (X-CGD).

While antibiotics can treat infections caused by X-CGD, they do not cure the disease itself. Patients with X-CGD can be cured with a hematopoietic stem cell (HSC) transplant from healthy bone marrow; however, finding a compatible donor is difficult. Even with a suitable donor, patients are at risk of developing graft-versus-host disease (GVHD), a serious and often deadly post-transplant complication that occurs when newly transplanted donor cells recognize a recipient’s own cells as foreign and attack the patient’s body.

Another treatment option under development for X-CGD is gene therapy, a technique for correcting defective genes responsible for disease development that involves manipulation of genetic material within an individual’s blood-forming stem cells using genetically engineered viruses. However, this gene therapy has so far proved to be inefficient at correcting X-CGD. In addition, these engineered viruses insert new genetic material at random locations in the blood-forming stem cell genome, putting patients at significantly higher risk for developing genetic mutations that may eventually lead to serious blood disorders, including blood cancer.

In order to develop a more effective and safer gene therapy for X-CGD, researchers from the National Institute of Allergy and Infectious Disease (NIAID) at the National Institutes of Health (NIH) and The Johns Hopkins University School of Medicine embarked on a study using a more precise method for performing gene therapy that did not use viruses for the gene correction. Researchers removed adult stem cells from the bone marrow of a patient with X-CGD and genetically reprogrammed them to become induced pluripotent stem cells (iPS cells). Like embryonic stem cells, these patient-specific iPS cells can be grown and manipulated indefinitely in culture while retaining their capacity to differentiate into any cell type of the body, including HSCs.

“HSCs that are derived from gene corrected iPS cells are tissue-compatible with the patient and may create a way for the patient’s own cells to be used in a transplant to cure the disease, removing the risk of GVHD or the need to find a compatible donor,” said Harry L. Malech, MD, senior study author, Chief of the Laboratory of Host Defenses and Head of the Genetic Immunotherapy Section of NIAID at the NIH. “However, turning iPS cells into a large number of HSCs that are efficently transplantable remains technically difficult; therefore, our study aimed at demonstrating that it is possible to differentiate gene corrected iPS cells into a large number of corrected neutrophils. These corrected neutrophils, grown in culture, are tissue-compatible with the patient and may be used to manage the life-threatening infections that are caused by the disease.”

Typically, iPS cells from a patient with an inherited disorder do not express disease traits, despite the fact that the iPS cell genome contains the expected mutation. The researchers were able to prove, in culture, that iPS cells from a patient with X-CGD could be differentiated into mature neutrophils that failed to produce hydrogen peroxide, thus expressing the disease trait. This is the first study in which the disease phenotype has been reproduced in neutrophils differentiated from X-CGD patient-specific iPS cells.

After discovering that the disease could be reproduced in cell culture, the researchers then sought to correct the disease and produce healthy neutrophils in culture. They used synthetic proteins called zinc finger nucleases (ZFNs) to target a corrective gene at a specifically defined location in the genome of the X-CGD iPS cells. The iPS cells were then carefully screened to identify those containing a single copy of the corrective gene properly inserted only at the safe site. The researchers observed that some of the gene-corrected iPS cells could differentiate into neutrophils that produced normal levels of hydrogen peroxide, effectively “correcting” the disease.

“This is the first study that uses ZFNs in specific targeting gene transfer to correct X-CGD,” said Dr. Malech. “Demonstrating that this approach to gene therapy works with a single-gene disease such as X-CGD means that the results from our study offer not only a potential treatment for this disease, but more importantly, a technique by which other single-gene diseases can be corrected using specifically targeted gene therapy on iPS cells."

Reporters who wish to receive a copy of the study or arrange an interview with the authors may contact Claire Gwayi-Chore at 202-776-0544 or cgwayi-chore@hematology.org.

The American Society of Hematology is the world’s largest professional society concerned with the causes and treatment of blood disorders. Its mission is to further the understanding, diagnosis, treatment, and prevention of disorders affecting blood, bone marrow, and the immunologic, hemostatic, and vascular systems by promoting research, clinical care, education, training, and advocacy in hematology. The official journal of ASH is Blood, the most cited peer-reviewed publication in the field, which is available weekly in print and online.

Claire Gwayi-Chore | EurekAlert!
Further information:
http://www.hematology.org/News/2011/6600.aspx

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>