Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene therapy for metastatic melanoma in mice produces complete remission

A potent anti-tumor gene introduced into mice with metastatic melanoma has resulted in permanent immune reconfiguration and produced a complete remission of their cancer, according to an article to be published in the December 2010 issue of the Journal of Clinical Investigation. The online version is now available.

Indiana University School of Medicine researchers used a modified lentivirus to introduce a potent anti-melanoma T cell receptor gene into the hematopoietic stem cells of mice. Hematopoietic stem cells are the bone marrow cells that produce all blood and immune system cells.

The T cell gene, which recognizes a specific protein found on the surface of melanoma, was isolated and cloned from a patient with melanoma. The gene-modified stems cells were then transplanted back into hosts and found to eradicate metastatic melanoma for the lifetime of the mice.

"We found that the transplantation of gene-modified hematopoietic stem cells results in a new host immune system and the complete elimination of tumor," reported Christopher E. Touloukian, M.D., an assistant professor of surgery and immunology at the IU School of Medicine and a member of the Indiana University Melvin and Bren Simon Cancer Center. "To date, cancer immunotherapies have been hampered by limited and diminishing immune responses over time. We believe this type of translational model opens new doors for patients with melanoma and potentially other cancers by taking advantage of the potent regenerative capacity of hematopoietic stem cells and new advances in gene therapy."

This research was funded by a National Institutes of Health grant.

It has paved the way for a new clinical trial in humans funded by the V Foundation for Cancer Research. The pilot phase I trial will involve treatment of 12 patients and focus primarily on the safety and efficacy of the therapy, said Dr. Touloukian, who is the senior author on the JCI paper and the principal investigator for the clinical study. The clinical trial is expected to begin accruing patients by late 2011.

In 2010, more than 68,000 patients will be diagnosed with melanoma and the disease will be associated with approximately 9,000 deaths. The state of Indiana has the 11th highest rate of melanoma incidence of all 50 states. Current treatments for metastatic melanoma, though exciting and innovative, have been highly toxic and largely unsuccessful with the most patients dying within 6 to 12 months after diagnosis.

Mary L. Hardin | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>