Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy kills breast cancer stem cells, boosts chemotherapy

13.09.2011
Targeted agent avoids healthy cells, blocks proteins that prevent cell death in tumors

Gene therapy delivered directly to a particularly stubborn type of breast cancer cell causes the cells to self-destruct, lowers chance of recurrence and helps increase the effectiveness of some types of chemotherapy, researchers at The University of Texas MD Anderson Cancer Center reported in the Sept. 13 edition of Cancer Cell.

In cellular and mouse studies, scientists found the gene mutation BikDD significantly reduced treatment-resistant breast-cancer initiating cells (BCICs), also known as breast cancer stem cells, by blocking the activity of three proteins in the Bcl-2 family. This genetic approach increased the benefits of lapatinib, one of the most common chemotherapy drugs for breast cancer.

"There are no effective methods to target BCICs, and they're urgently needed, especially for relapsed breast cancer patients," said senior author Mien-Chie Hung, Ph.D., vice president for basic research, professor and chair of MD Anderson's Department of Molecular and Cellular Oncology. "This research suggests a potential therapeutic approach to breast cancer stem cells that will minimize recurrence and drug resistance."

Special delivery system targets cells

Gene therapy was deposited directly into breast cancer cells with an innovative delivery system called VISA, short for versatile expression vector, which was developed at MD Anderson. It includes a targeting agent, also called a promoter, two components that boost gene expression in the target tissue and a payload -- a Bik mutant gene called BikDD known to kill cancer cells. It's all packaged in a fatty ball called a liposome and delivered intravenously.

This system has been successfully applied in pancreatic, lung, liver and ovarian cancer preclinical models. MD Anderson clinical researchers are preparing a phase I clinical trial for pancreatic cancer.

Stem cells frequently stymie treatment

Breast cancer stem cells, often resistant to chemotherapy and radiotherapy, are a major obstacle for breast cancer treatment, Hung said. If any of these cells remain after treatment, a new tumor often forms. Although lapatinib, known commercially as Tykerb®, can stabilize the level of these cells, no drugs are available to reduce them.

The Bcl-2 family of proteins – especially the subtypes Bcl-2, Bcl-xL and Mcl-1 -- is essential for breast cancer tumor growth and treatment resistance. If too many of these three proteins are present, they can cause poor prognosis and resistance to chemotherapy drugs including lapatinib, as well as paclitaxel, doxorubicin and cisplatin.

This study shows that Bcl-2 proteins help breast cancer stem cells survive, causing resistance to treatment and likelihood of recurrence. However, using VISA to deliver BikDD can block the three key Bcl-2 proteins, eliminating the stem cells.

VISA-claudin4-BikDD cuts tumor burden

The researchers engineered a VISA that contained claudin4, a protein over-expressed in breast cancer, as a targeting agent to preferentially express BikDD in breast cancer cells. This process silenced the three Bcl-2 proteins and caused the cancer cells to self-destruct. Since the VISA focused the BikDD on cancer cells, normal cells were not affected.

Treating mice with the VISA-claudin4-BikDD therapy reduced tumor volume by 75 percent compared to control mice.

They also compared VISA-claudin4-BikDD therapy to BikDD packaged with a non-specific strong promoter from cytomegalovirus. Both versions reduced tumor burden and extended survival of mice, but tumor volume in mice treated with VISA-claudin4-BikDD was half that of the CMV-BikDD-treated mice. In a safety study using an unusually high dose, 60 percent of mice treated with CMV-BikDD survived after three days; all mice treated with VISA-Claudin4-BikDD survived for the duration of the 14-day safety profile study.

In cell line experiments, the CMV-BikDD also invaded and destroyed normal cells, while the VISA-Claudin4-BikDD did not.

Agent energizes lapatinib, other drugs

BikDD made HER2-positive breast cancer cells more sensitive to lapatinib when all three Bcl-2 proteins were inhibited but not when they were inhibited separately. HER2-positive breast cancer is a particularly aggressive type that makes too much human epidermal growth factor 2; it accounts for about 20 percent of breast cancers. BikDD also sensitized EGFR+ (epidermal growth factor positive) breast cancer cells to lapatinib and several other breast cancer cells lines to paclitaxel.

Moving discovery forward

Hung said this approach is promising for breast cancer treatment, especially recurrent disease.

"VISA-claudin4-BikDD gene therapy may provide an effective strategy to inhibit breast tumor growth," he said. "It demonstrates virtually no toxicity in normal cells and produces a profound killing effect in multiple breast cancer cell lines and synergy with other agents."

Hung said the next step is to move VISA-claudin4-BikDD into a Phase I clinical trial to test its effect on patients with breast cancer.

This work was supported by grants from the National Cancer Institute, including MD Anderson's Specialized Program in Research Excellence grant, the MD Anderson/China Medical University Hospital Sister Institution Fund, the Breast Cancer Research Foundation, National Breast Cancer Foundation, Inc., Patel Memorial Breast Cancer Research Fund, MD Anderson's Center for Biological Pathways and NCI Cancer Center Support Grant, and the Taiwan Department of Health Cancer Center Research of Excellence Grant.

In addition to Hung, MD Anderson researchers include first author Jing-Yu Lang, Ph.D., first author, Jennifer Hsu, Ph.D., Chun-Ju Chang, Ph.D., Qingfei Wang, Ph.D., Xiaoming Xie, Ph.D., Yi Bao, Ph.D., Hirohito Yamaguchi, Ph.D. and Dihua Yu, M.D., Ph.D., Department of Molecular and Cellular Oncology; Funda Meric-Bernstam, M.D., Department of Surgical Oncology; Wendy Woodward, M.D., Ph.D., Department of Radiation Oncology; and Gabriel Hortobagyi, M.D., Department of Breast Medical Oncology.

Hung and Hsu hold joint appointments at China Medical University and Asia University, Taichung, Taiwan. Xie holds an appointment at Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.

About MD Anderson

The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For eight of the past 10 years, including 2011, MD Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>