Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene therapy kills breast cancer stem cells, boosts chemotherapy

Targeted agent avoids healthy cells, blocks proteins that prevent cell death in tumors

Gene therapy delivered directly to a particularly stubborn type of breast cancer cell causes the cells to self-destruct, lowers chance of recurrence and helps increase the effectiveness of some types of chemotherapy, researchers at The University of Texas MD Anderson Cancer Center reported in the Sept. 13 edition of Cancer Cell.

In cellular and mouse studies, scientists found the gene mutation BikDD significantly reduced treatment-resistant breast-cancer initiating cells (BCICs), also known as breast cancer stem cells, by blocking the activity of three proteins in the Bcl-2 family. This genetic approach increased the benefits of lapatinib, one of the most common chemotherapy drugs for breast cancer.

"There are no effective methods to target BCICs, and they're urgently needed, especially for relapsed breast cancer patients," said senior author Mien-Chie Hung, Ph.D., vice president for basic research, professor and chair of MD Anderson's Department of Molecular and Cellular Oncology. "This research suggests a potential therapeutic approach to breast cancer stem cells that will minimize recurrence and drug resistance."

Special delivery system targets cells

Gene therapy was deposited directly into breast cancer cells with an innovative delivery system called VISA, short for versatile expression vector, which was developed at MD Anderson. It includes a targeting agent, also called a promoter, two components that boost gene expression in the target tissue and a payload -- a Bik mutant gene called BikDD known to kill cancer cells. It's all packaged in a fatty ball called a liposome and delivered intravenously.

This system has been successfully applied in pancreatic, lung, liver and ovarian cancer preclinical models. MD Anderson clinical researchers are preparing a phase I clinical trial for pancreatic cancer.

Stem cells frequently stymie treatment

Breast cancer stem cells, often resistant to chemotherapy and radiotherapy, are a major obstacle for breast cancer treatment, Hung said. If any of these cells remain after treatment, a new tumor often forms. Although lapatinib, known commercially as Tykerb®, can stabilize the level of these cells, no drugs are available to reduce them.

The Bcl-2 family of proteins – especially the subtypes Bcl-2, Bcl-xL and Mcl-1 -- is essential for breast cancer tumor growth and treatment resistance. If too many of these three proteins are present, they can cause poor prognosis and resistance to chemotherapy drugs including lapatinib, as well as paclitaxel, doxorubicin and cisplatin.

This study shows that Bcl-2 proteins help breast cancer stem cells survive, causing resistance to treatment and likelihood of recurrence. However, using VISA to deliver BikDD can block the three key Bcl-2 proteins, eliminating the stem cells.

VISA-claudin4-BikDD cuts tumor burden

The researchers engineered a VISA that contained claudin4, a protein over-expressed in breast cancer, as a targeting agent to preferentially express BikDD in breast cancer cells. This process silenced the three Bcl-2 proteins and caused the cancer cells to self-destruct. Since the VISA focused the BikDD on cancer cells, normal cells were not affected.

Treating mice with the VISA-claudin4-BikDD therapy reduced tumor volume by 75 percent compared to control mice.

They also compared VISA-claudin4-BikDD therapy to BikDD packaged with a non-specific strong promoter from cytomegalovirus. Both versions reduced tumor burden and extended survival of mice, but tumor volume in mice treated with VISA-claudin4-BikDD was half that of the CMV-BikDD-treated mice. In a safety study using an unusually high dose, 60 percent of mice treated with CMV-BikDD survived after three days; all mice treated with VISA-Claudin4-BikDD survived for the duration of the 14-day safety profile study.

In cell line experiments, the CMV-BikDD also invaded and destroyed normal cells, while the VISA-Claudin4-BikDD did not.

Agent energizes lapatinib, other drugs

BikDD made HER2-positive breast cancer cells more sensitive to lapatinib when all three Bcl-2 proteins were inhibited but not when they were inhibited separately. HER2-positive breast cancer is a particularly aggressive type that makes too much human epidermal growth factor 2; it accounts for about 20 percent of breast cancers. BikDD also sensitized EGFR+ (epidermal growth factor positive) breast cancer cells to lapatinib and several other breast cancer cells lines to paclitaxel.

Moving discovery forward

Hung said this approach is promising for breast cancer treatment, especially recurrent disease.

"VISA-claudin4-BikDD gene therapy may provide an effective strategy to inhibit breast tumor growth," he said. "It demonstrates virtually no toxicity in normal cells and produces a profound killing effect in multiple breast cancer cell lines and synergy with other agents."

Hung said the next step is to move VISA-claudin4-BikDD into a Phase I clinical trial to test its effect on patients with breast cancer.

This work was supported by grants from the National Cancer Institute, including MD Anderson's Specialized Program in Research Excellence grant, the MD Anderson/China Medical University Hospital Sister Institution Fund, the Breast Cancer Research Foundation, National Breast Cancer Foundation, Inc., Patel Memorial Breast Cancer Research Fund, MD Anderson's Center for Biological Pathways and NCI Cancer Center Support Grant, and the Taiwan Department of Health Cancer Center Research of Excellence Grant.

In addition to Hung, MD Anderson researchers include first author Jing-Yu Lang, Ph.D., first author, Jennifer Hsu, Ph.D., Chun-Ju Chang, Ph.D., Qingfei Wang, Ph.D., Xiaoming Xie, Ph.D., Yi Bao, Ph.D., Hirohito Yamaguchi, Ph.D. and Dihua Yu, M.D., Ph.D., Department of Molecular and Cellular Oncology; Funda Meric-Bernstam, M.D., Department of Surgical Oncology; Wendy Woodward, M.D., Ph.D., Department of Radiation Oncology; and Gabriel Hortobagyi, M.D., Department of Breast Medical Oncology.

Hung and Hsu hold joint appointments at China Medical University and Asia University, Taichung, Taiwan. Xie holds an appointment at Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.

About MD Anderson

The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For eight of the past 10 years, including 2011, MD Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>