Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy eliminates brain tumors through selective recruitment of immune cells

13.01.2009
In laboratory and animal studies, a 2-pronged gene therapeutic approach resulted in tumor regression and long-term survival; next step is a human clinical trial

Scientists seeking to harness the power of the immune system to eradicate brain tumors face two major hurdles: recruiting key immune cells called dendritic cells into areas of the brain where they are not naturally found and helping them recognize tumor cells as targets for attack.

Researchers at Cedars-Sinai Medical Center, however, have identified a sequence of molecular events that accomplish both objectives. Their findings, based on laboratory and animal studies, appear in the Jan. 13 issue of PLoS Medicine, an open-access online journal of the Public Library of Science.

The Cedars-Sinai team discovered that a protein – HMGB1 – released from dying tumor cells activates dendritic cells and stimulates a strong and effective anti-tumor immune response. HMGB1 does so by binding to an inflammatory receptor called toll-like receptor 2, or TLR2, found on the surface of dendritic cells.

"Toll receptors play a major role in the immune system's recognition of bacterial and viral components, but now we have shown that they also trigger an immune response against tumors," said Maria G. Castro, Ph.D., co-director of Cedars-Sinai's Board of Governors Gene Therapeutics Research Institute and one of the article's senior authors. "Activation of Toll receptors was essential for two key stages in initiating immune responses against the tumor – the migration of peripheral dendritic cells into the brain tumor and the subsequent activation of dendritic cells and stimulation of a specific anti-tumor cytotoxic T-cell mediated response."

Building on more than 10 years of research in this area, the researchers used a combined gene therapeutic approach, using one protein (Flt3L) to draw dendritic cells from bone marrow into the brain tumors, and a second protein (Herpes Symplex type I Thymidine Kinase, or TK), combined with the antiviral gancyclovir to kill tumor cells and elicit long-term survival. In this paper, they uncovered a novel mechanism by which tumor cell death in response to the treatment leads to the release of an endogenous tumor protein, HMGB1, which is essential to trigger the anti-tumor immunological cascade. The study showed for the first time that HMGB1 released from dying brain cancer cells activates TLR2 signaling on tumor infiltrating dendritic cells, resulting in the activation and expansion of tumor-antigen specific T cells. This caused the regression of the brain tumors and increased survival time by six months in experimental brain tumor models.

Glioblastoma multiforme is the most aggressive type of brain tumor, with only five percent of patients surviving five years following diagnosis. While new drugs have had some impact on survival rates, the traditional approaches to cancer treatment – surgery, radiation and chemotherapy – have failed to provide major improvements in long-term survival.

Immunotherapy – eradicating brain cancer cells by harnessing the patient's immune system – has been an attractive treatment approach, in theory. An effective anti-tumor immune response initially depends on dendritic cells that constantly "sample" the environment and can recognize unusual proteins, such as those belonging to cancers or infectious pathogens. However, since there are few dendritic cells in the brain, the immune responses in this organ are dampened when compared to those elicited in other parts of the body.

According to Pedro Lowenstein, M.D., Ph.D., director of the Board of Governors Gene Therapeutics Research Institute and co-senior author, "The discovery of a central role for HMGB1 and TLR2 in overcoming immune ignorance to brain tumor antigens provides a new therapeutic approach in the fight against brain tumors. Our conclusions relating to anti-glioma immune responses have also been extended to enhancing immune responses against a number of other metastatic brain cancers, such as melanoma."

He stated that plans are underway to test this novel therapeutic approach in a human clinical trial for recurrent brain tumors in 2009.

Simi Singer | EurekAlert!
Further information:
http://www.cshs.org

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>