Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can gene therapy cure fatal diseases in children?

05.09.2012
That low bone density causes osteoporosis and a risk of fracture is common knowledge. But an excessively high bone density is also harmful.
The most serious form of excessively high bone density is a rare, hereditary disease which can lead to the patient’s death by the age of only five. Researchers at Lund University in Sweden are now trying to develop gene therapy against this disease.

In order for the body to function, a balance is necessary between the cells that build up the bones in our skeletons and the cells that break them down. In the disease malignant infantile osteopetrosis, MIOP, the cells that break down the bone tissue do not function as they should, resulting in the skeleton not having sufficient cavities for bone-marrow and nerves.

“Optic and auditory nerves are compressed, causing blindness and deafness in these children. Finally the bone marrow ceases to function and, without treatment, the child dies of anaemia and infections”, explains Carmen Flores Bjurström. She has just completed a thesis which presents some of the research at the division for Molecular Medicine and Gene Therapy in Lund.

The researchers’ work focuses on finding alternatives to the only treatment currently available against MIOP, namely a bone-marrow transplant. This treatment can be effective, but it is both risky and dependent on finding a suitable donor.

Gene therapy requires no donor, as stem cells are taken from the patients themselves. Once the cells’ non-functioning gene has been replaced with a healthy copy of itself, the stem cells are put back into the patient.
Great hopes have been placed on gene therapy as a treatment method but the work has proven to be more difficult than expected. The method is used today for certain immunodeficiency diseases, and has also been applied to a blood disorder called thalassemia.

”So far, the method is not risk-free. Since it is impossible to control where the introduced gene ends up, there is a certain risk of it ending up in the wrong place and giving rise to leukaemia. This is why gene therapy is only used for serious diseases for which there is no good treatment”, says Carmen Flores Bjurström.

The Lund researchers have conducted experiments with gene therapy in both patient cells and laboratory animals. The next step is to conduct trials on patients. The trials will probably take place at the hospital in Ulm, Germany, which currently treats the majority of children in Europe suffering from MIOP.
MIOP is a rare disease: in Sweden a child is born with the condition approximately once every three years. Worldwide, the incidence of the disease is one case for every 300 000 births. It is, however, more common in Costa Rica where 3-4 children per 100 000 births have the disease.

“But there are several other genetic mutations that lead to other osteopetrosis diseases. If we manage to treat MIOP, it may become possible to treat these other conditions as well”, hopes Carmen Flores Bjurström along with her supervisor, Professor Johan Richter.

The thesis is entitled "Targeting the hematopoietic stem cell to correct osteopetrosis" and it will be presented on 6 September.

You can reach Carmen Flores Bjurström by phone on 0046-46-222 0590, 0046-70-86 704 94 or email carmen.flores@med.lu.se, Johan Richter on 0046-46-222 05 87 or johan.richter@med.lu.se.

Katrin Ståhl | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>