Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene technology helps deceive greedy pest insects

01.08.2012
Worldwide cabbage farmers have vast problems with the diamond-back moth. It lays its eggs on the cabbage plants and the voracious appetite of the larvae ruins the yield.
However, Morten Emil Møldrup from the University of Copenhagen has developed a method to deceive the greedy insects. Møldrup presents his spectacular research results at a public PhD defense on Friday 3 August.

"We have discovered a way to cheat the diamond-back moths to lay their eggs on tobacco plants. As their larvae cannot survive on tobacco leaves they will soon starve to death. In the mean time you can cultivate your cabbage at peace," explains MSc in Biology and Biotechnology Morten Emil Møldrup from DynaMo, Center for Dynamic Molecular Interactions, University of Copenhagen.

It sounds like an imaginative scenario too good to be true. None the less Morten Emil Møldrup and his colleagues from DynaMo at University of Copenhagen have shown that it is indeed possible 'to cheat' the greedy little insects in exactly this way. Morten Emil Møldrup has studied the defence compounds of the cabbage family, the so called glucosinolates, exhaustively. Glucosinolates are toxic to cabbage pests in general, the diamond-back moth being one of very few exemptions.

Away with pesticides

The odour of the cabbage defense compounds attracts the pregnant diamond-back moths. To them the 'defence odour' is a signal of an ideal place to lay their eggs. In this way they ensure their larvae plenty of food without competition from others. After having thoroughly established how a cabbage plants produces defence compounds, Morten Emil Møldrup and his colleagues have successfully transferred the genes responsible for the production of glucosinolates from cabbage into tobacco plants.

"Our experiments show that it is indeed possible to fool the diamond-back moth to lay its eggs on tobacco plants. This is fantastic because the larvae are a major problem all over the world. At present we are aiming at making glucosinolate producing potato plants. The goal is to avoid diamond-back moths’ larvae in cabbage by cultivating potato and cabbage plants together. In this way a lot of money is to be saved, and in addition the growers do not need to use the big amounts of pesticides commonly used today. In this way one may say that our discovery is also of benefit to nature," Morten Emil Møldrup tells.

Defense against attacks

Morten Emil Møldrup researches the bioactive molecules that plants are using to protect themselves against pests and how the plants produce these natural defence compounds.

Morten Emil Møldrup’s PhD thesis is comprised of six journal articles. The thesis focus on two important plant defence compounds and their biosynthetic pathways and elucidates how biotechnological use of these compounds can pave the way for future crop protection.

The PhD defence takes place Friday 3 August, 1:00 p.m., at University of Copenhagen, Thorvaldsensvej 40, 1st floor, room M117, 1871 Frederiksberg C.

Morten Emil Møldrup | EurekAlert!
Further information:
http://www.ku.dk
http://news.ku.dk/all_news/2012/2012.8/new_biotech_fools_plants/

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>