Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene technology to fight lethal hospital acquired infection

19.01.2009
Scientists at The University of Nottingham are leading a major European study to unravel the genetic code of one of the most lethal strains of hospital acquired infections.

The 3 million euro, three-year study will use gene knock-out technology developed in Nottingham to study the function of genes in a ‘super’ strain of the bacteria Clostridium difficile to discover why it causes more severe disease, kills more people, is harder to eradicate and more resistant to antibiotics.

It is hoped that the HYPERDIFF study, which involves partners from the UK, Slovenia, Italy, France, The Netherlands and Germany and is funded with a grant from the European Community, will lead to better tests to diagnose ‘super’ strains of C.difficile, more effective treatments and, possibly, even a vaccine to protect against the disease.

Since the turn of the new millennium there has been a dramatic increase in the incidence of C.difficile. Currently the most frequently occurring healthcare associated infection, last year it killed more than seven times as many people in the UK as MRSA. Reasons for this increase may include improvements in reporting procedures, the increasing age of the population as the elderly are especially vulnerable, lower standards of hygiene and overcrowding on hospital wards.

However, a further significant factor has been the arrival in Europe of so-called ‘hypervirulent’ strains such as ribotype 027, which are responsible for more severe disease and are more difficult to treat.

Currently, scientists know that the bacteria cause disease by sticking to epithelial cells of the gut lining and releasing two toxins that damage cells leading to the tell-tale symptom of severe diarrhoea. However, there is very little known about the ways in which the bacteria operate and why the strain should be more severe than its less virulent cousins.

Leading the study, Professor Nigel Minton in The University of Nottingham’s School of Molecular Medical Sciences, said: “These hypervirulent organisms seem to be taking over as the dominant strain in outbreaks and, worryingly, there are only two antibiotics which are still effective against them. There is a very real danger that total resistance may arise, and if that happens then this will become an extremely serious problem.

“The idea behind the study is that we investigate the genomes of the hypervirulent strains and identify their differences to the so-called standard strains. In this way, we should get a clearer picture of the whole range of factors involved in its spread and the way in which it causes disease.”

During the three-year study, scientists at Nottingham will use a technology called ClosTron to produce mutant versions of the hypervirulent strains. They will knock out genes one by one and then compare the mutant version to the standard organism to assess the function of each cell.

The project will also investigate whether pets and other domesticated animals are carriers of the bacteria and what effect this may have had on the rise of C.difficile as a community acquired infection.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk
http://communications.nottingham.ac.uk/News/Article/Gene-technology-to-fight-infection.html

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>