Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene switches do more than flip 'on' or 'off'

12.04.2012
Anyone who's tried a weekend home improvement project knows that to do a job right, you've got to have the right tools. For cells, these "tools" are proteins encoded by genes.

The right genes for the job are turned on only in the specific cells where they are needed. And every cell in your body has a specific job to do. Cells in your pancreas have to produce insulin, while cells in the retina of your eye must be able to sense light and color. Like using the wrong tool for the job, if the wrong genes are turned on in a cell, it can cause a real mess. Worse, in some cases it can cause serious disease like cancer.

Scientists have known this for decades. They've also known that there are specific proteins called "transcription factors" that control which genes are turned on or off in cells by binding to nearby DNA. Transcription factors were thought to act like a switch; they are either "on" (bound to DNA) or "off" (not bound).

A UNC-led team of scientists has now shown that transcription factors don't act like an 'on-off' switch, but instead can exhibit much more complex binding behavior.

"This is a new way of looking at how genes are controlled," says Jason Lieb, PhD, study senior author. "For a while now there have been molecular maps that show the location of where the proteins are bound to DNA – like a roadmap. For the first time, we are able to show the molecular equivalent of a real-time traffic report." Their study appears in the April 12, 2012 issue of the journal Nature. Lieb is a professor of biology and a member of UNC Lineberger Comprehensive Cancer Center.

Working in yeast, the UNC team learned that the transcription factors' binding process is dynamic and involves more than just being bound or unbound. In addition to a stable binding state (on or off), the team demonstrates a state that they call "treadmilling," where no forward transcription process is occurring. Within this process, they hypothesize the existence of a molecular "clutch" that converts treadmilling to a stable bound state, moving the transcription process forward to completion to turn the gene on.

Lieb explains, "This discovery is exciting because we developed a new way to measure and calculate how long a protein is associated with all of the different genes it regulates. This is important because it represents a new step in the process of how genes are regulated. And with every new step, there are opportunities for new mechanisms of regulation." Lieb is director of the Carolina Center for Genome Sciences.

He adds, "We found that proteins that bind in the stable state are associated with high levels of gene transcription. We think that if we can regulate the transition between treadmilling and stable binding, we can regulate the outcome in terms of gene expression. Ultimately, this type of regulation could be important for genetic medicine – a new way to regulate the 'switches' that turn gene expression associated with disease on or off."

The team set up a controlled competition between two copies of the same transcription factor, each with a unique molecular tag. They let one of the proteins bind to all of its gene targets, then introduced the second copy. Next the team measured how long it took the competitor transcription factor to replace the resident protein and used this data to calculate the residence time at each location in the genome. Colin Lickwar, MS, first author of the paper, says, "We didn't know if the residence time was important, but we found that the residence time was a much better indicator of whether a gene was turned on or off than previous measures of binding."

Anthony Carter, PhD, who oversees gene regulation grants at the National Institutes of Health's National Institute of General Medical Sciences, explains, "By taking an interdisciplinary approach that incorporates the use of mathematical modeling tools, Dr. Lieb has shed new light on a fundamental cellular process, the ability to quickly shift between active and inactive states of gene expression. The findings may offer new insights on how cells respond to developmental cues and how they adapt to changing environmental conditions." The National Institute of General Medical Sciences partially supported the work.

Other UNC authors are: Sean E. Hanlon, PhD. Additional authors are James G. McNally, PhD. and Florian Mueller, PhD, both from the Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health.

Dianne G. Shaw | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>