Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene studies lead to kissing cousins

13.04.2010
To look at the tobacco budworm moth and its close cousin, you wouldn’t be able to tell the fuzzy-looking, fingertip-size moths apart.

But put males of each species as far as six car-lengths away from females, and even in the darkness of midnight they easily find their way to mates from their own species while ignoring females from the other species. Today, the genes that keep the species sexually isolated are no longer a mystery, thanks to research from North Carolina State University and the University of Utah.

NC State entomologist Dr. Fred Gould says the study, published today in the online edition of the Proceedings of the National Academy of Sciences, gives scientists a better understanding of how moths descended from a common ancestor and evolved distinctly different ways of communicating with mates.

Biologists have long been fascinated by the intricate way moths communicate through airborne chemicals known as sex pheromones. There are more than 100,000 species of moths, with each relying on its own unique pheromone blend, different in terms of the chemicals that make it up and the ratio of those chemicals. Females produce these precisely blended perfumes, and only males of their species respond to that sexual cue. Until now, scientists had a long list of potential genes and cellular molecules that could be responsible for each male finding only females of its own species.

In the PNAS paper, Gould and his collaborators explain how, through breeding, they moved a number of hypothesized sexual communication genes from Heliothis virescens, the budworm, into Heliothis subflexa, its close relative. They found that when they moved one specific small set of odorant receptor genes, the hybrid males understood and responded to the female budworm’s pheromones in the same way that true male budworms respond.

The scientists cross-bred the related moths in their Raleigh laboratory and studied the moths’ behavior in Utah wind tunnels, watching to see which pheromone blends attracted and repelled which offspring.

Then they inserted tiny electrodes into cells of the moths’ antennae and measured how neurons in the antennae responded to the pheromones of the two species. They found that in each male the antennae neurons’ response was largely controlled by which of the species’ receptor genes it had inherited.

“In the end, the finding that big changes in the moths’ responses to pheromones are controlled by such a small genetic change is a first step toward understanding how the thousands of moth species evolved,” Gould says.

The puzzle, or evolutionary paradox, has been that within each moth species “natural selection constantly acts against any female that makes a novel pheromone blend that isn’t recognized by males of its species,” Gould says. “And males that have a mutated receptor gene that recognizes an as-yet-unevolved pheromone will have a hard time finding a mate.”

This has led some to assume that a new moth species could evolve only if genetic changes occurred in the male and female at the same instant in evolutionary time – which is highly unlikely.

“In the narrow sense, the research is about the evolution of sexual communication and speciation,” Gould says. “But in a broader sense, it is about the evolution of what are sometimes called characteristics with irreducible complexity. Irreducible complexity is the idea that some traits are so complicated that there’s no way for them to have evolved by natural selection.

“Moths seem to possess an irreducibly complex mating system,” he says, “but perhaps the puzzle of how this system evolved has simply been difficult to solve.”

Gould and his colleagues hope that, armed with a new understanding of the male sexual communication genes plus knowledge of the female genes from previous studies, they may now be in a position to recreate the evolutionary events involved in moth speciation. That would finally solve the puzzle.

Dee Shore | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>