Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene studies lead to kissing cousins

13.04.2010
To look at the tobacco budworm moth and its close cousin, you wouldn’t be able to tell the fuzzy-looking, fingertip-size moths apart.

But put males of each species as far as six car-lengths away from females, and even in the darkness of midnight they easily find their way to mates from their own species while ignoring females from the other species. Today, the genes that keep the species sexually isolated are no longer a mystery, thanks to research from North Carolina State University and the University of Utah.

NC State entomologist Dr. Fred Gould says the study, published today in the online edition of the Proceedings of the National Academy of Sciences, gives scientists a better understanding of how moths descended from a common ancestor and evolved distinctly different ways of communicating with mates.

Biologists have long been fascinated by the intricate way moths communicate through airborne chemicals known as sex pheromones. There are more than 100,000 species of moths, with each relying on its own unique pheromone blend, different in terms of the chemicals that make it up and the ratio of those chemicals. Females produce these precisely blended perfumes, and only males of their species respond to that sexual cue. Until now, scientists had a long list of potential genes and cellular molecules that could be responsible for each male finding only females of its own species.

In the PNAS paper, Gould and his collaborators explain how, through breeding, they moved a number of hypothesized sexual communication genes from Heliothis virescens, the budworm, into Heliothis subflexa, its close relative. They found that when they moved one specific small set of odorant receptor genes, the hybrid males understood and responded to the female budworm’s pheromones in the same way that true male budworms respond.

The scientists cross-bred the related moths in their Raleigh laboratory and studied the moths’ behavior in Utah wind tunnels, watching to see which pheromone blends attracted and repelled which offspring.

Then they inserted tiny electrodes into cells of the moths’ antennae and measured how neurons in the antennae responded to the pheromones of the two species. They found that in each male the antennae neurons’ response was largely controlled by which of the species’ receptor genes it had inherited.

“In the end, the finding that big changes in the moths’ responses to pheromones are controlled by such a small genetic change is a first step toward understanding how the thousands of moth species evolved,” Gould says.

The puzzle, or evolutionary paradox, has been that within each moth species “natural selection constantly acts against any female that makes a novel pheromone blend that isn’t recognized by males of its species,” Gould says. “And males that have a mutated receptor gene that recognizes an as-yet-unevolved pheromone will have a hard time finding a mate.”

This has led some to assume that a new moth species could evolve only if genetic changes occurred in the male and female at the same instant in evolutionary time – which is highly unlikely.

“In the narrow sense, the research is about the evolution of sexual communication and speciation,” Gould says. “But in a broader sense, it is about the evolution of what are sometimes called characteristics with irreducible complexity. Irreducible complexity is the idea that some traits are so complicated that there’s no way for them to have evolved by natural selection.

“Moths seem to possess an irreducibly complex mating system,” he says, “but perhaps the puzzle of how this system evolved has simply been difficult to solve.”

Gould and his colleagues hope that, armed with a new understanding of the male sexual communication genes plus knowledge of the female genes from previous studies, they may now be in a position to recreate the evolutionary events involved in moth speciation. That would finally solve the puzzle.

Dee Shore | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>