Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene studies lead to kissing cousins

13.04.2010
To look at the tobacco budworm moth and its close cousin, you wouldn’t be able to tell the fuzzy-looking, fingertip-size moths apart.

But put males of each species as far as six car-lengths away from females, and even in the darkness of midnight they easily find their way to mates from their own species while ignoring females from the other species. Today, the genes that keep the species sexually isolated are no longer a mystery, thanks to research from North Carolina State University and the University of Utah.

NC State entomologist Dr. Fred Gould says the study, published today in the online edition of the Proceedings of the National Academy of Sciences, gives scientists a better understanding of how moths descended from a common ancestor and evolved distinctly different ways of communicating with mates.

Biologists have long been fascinated by the intricate way moths communicate through airborne chemicals known as sex pheromones. There are more than 100,000 species of moths, with each relying on its own unique pheromone blend, different in terms of the chemicals that make it up and the ratio of those chemicals. Females produce these precisely blended perfumes, and only males of their species respond to that sexual cue. Until now, scientists had a long list of potential genes and cellular molecules that could be responsible for each male finding only females of its own species.

In the PNAS paper, Gould and his collaborators explain how, through breeding, they moved a number of hypothesized sexual communication genes from Heliothis virescens, the budworm, into Heliothis subflexa, its close relative. They found that when they moved one specific small set of odorant receptor genes, the hybrid males understood and responded to the female budworm’s pheromones in the same way that true male budworms respond.

The scientists cross-bred the related moths in their Raleigh laboratory and studied the moths’ behavior in Utah wind tunnels, watching to see which pheromone blends attracted and repelled which offspring.

Then they inserted tiny electrodes into cells of the moths’ antennae and measured how neurons in the antennae responded to the pheromones of the two species. They found that in each male the antennae neurons’ response was largely controlled by which of the species’ receptor genes it had inherited.

“In the end, the finding that big changes in the moths’ responses to pheromones are controlled by such a small genetic change is a first step toward understanding how the thousands of moth species evolved,” Gould says.

The puzzle, or evolutionary paradox, has been that within each moth species “natural selection constantly acts against any female that makes a novel pheromone blend that isn’t recognized by males of its species,” Gould says. “And males that have a mutated receptor gene that recognizes an as-yet-unevolved pheromone will have a hard time finding a mate.”

This has led some to assume that a new moth species could evolve only if genetic changes occurred in the male and female at the same instant in evolutionary time – which is highly unlikely.

“In the narrow sense, the research is about the evolution of sexual communication and speciation,” Gould says. “But in a broader sense, it is about the evolution of what are sometimes called characteristics with irreducible complexity. Irreducible complexity is the idea that some traits are so complicated that there’s no way for them to have evolved by natural selection.

“Moths seem to possess an irreducibly complex mating system,” he says, “but perhaps the puzzle of how this system evolved has simply been difficult to solve.”

Gould and his colleagues hope that, armed with a new understanding of the male sexual communication genes plus knowledge of the female genes from previous studies, they may now be in a position to recreate the evolutionary events involved in moth speciation. That would finally solve the puzzle.

Dee Shore | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>