Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene silencing may be responsible for induced pluripotent stem cells' limitations

26.04.2010
Better understanding of mechanisms involved should improve reprogramming of embryonic-like cells

Scientists may be one step closer to being able to generate any type of cells and tissues from a patient's own cells. In a study that will appear in the journal Nature and is receiving early online release, investigators from the Massachusetts General Hospital Center for Regenerative Medicine (MGH-CRM) and the Harvard Stem Cell Institute (HSCI), describe finding that an important cluster of genes is inactivated in induced pluripotent stem cells (iPSCs) that do not have the full development potential of embryonic stem cells. Generated from adult cells, iPSCs have many characteristics of embryonic stem cells but also have had significant limitations.

"We found that a segment of chromosome 12 containing genes important for fetal development was abnormally shut off in most iPSCs," says Konrad Hochedlinger, PhD, of the MGH-CRM and HSCI, who led the study. "These findings indicate we need to keep improving the way we produce iPSCs and suggest the need for new reprogramming strategies."

Although iPSCs appear quite similar to embryonic stem cells and give rise to many different types of cells, they have important limitations. Several molecular differences have been observed, particularly in the epigenetic processes that control which genes are expressed, and procedures that are able to generate live animals from the embryonic stem cells of mice are much less successful with iPSCs.

Previous studies have compared iPSCs generated with the help of viruses, which can alter cellular DNA, to embryonic stem cells from unrelated animals. To reduce the chance that the different sources of the cells were responsible for observed molecular differences, the MGH/HSCI research team prepared two genetically matched cell lines. After generating mice from embryonic stem cells, they used a technique that does not use viruses to prepare lines of iPSCs from several types of cells taken from those animals. They then compared the iPSCs with the original, genetically identical embryonic stem cells.

The most stringent assay of cells' developmental potential showed that two tested lines of embryonic stem cells were able to generate live mice as successfully as in previous studies, but no animals could be generated from genetically matched iPSCs. Closely comparing RNA transcription profiles of several matched cell lines revealed significantly reduced transcription of two genes in the iPSCs. Both genes are part of a gene cluster on chromosome 12 that normally is maternally imprinted – meaning that only the gene copies inherited from the mother are expressed.

Examination of more than 60 iPSCs lines developed from several types of cells revealed that this gene cluster was silenced in the vast majority of cell lines. While the gene-silenced iPSCs were able to generate many types of mouse tissues, their overall developmental potential was limited. In an assay that produces chimeric animals that incorporate cells from two different stem cells, mice produced from gene-silenced cells had very few tissues that originated from the iPSCs. However, in a few iPSC lines the gene cluster was normally activated, and in the most rigorous developmental assay, those iPSCs were as successful in producing live animals as embryonic stem cells have been. The authors believe this is the first report of animals being produced entirely from adult-derived iPSCs.

"The activation status of this imprinted cluster allowed us to prospectively identify iPSCs that have the full developmental potential of embryonic stem cells," says Matthias Stadtfeld, PhD, of the MGH-CRM and HSCI, a co-lead author of the report. "Identifying pluripotent cells of the highest quality is crucial to the development of therapeutic applications, so we can ensure that any transplanted cells function as well as normal cells. It's going to be important to see whether iPSCs derived from human patients have similar differences in gene expression and if they can be as good as embryonic stem cells – which continue to be the gold standard – in giving rise to the 220 functional cell types in the human body."

Hochedlinger adds, "Previous studies in mice have shown that embryonic stem cells derived from nuclear transfer – the technique used to clone animals – are indistinguishable from stem cells derived from fertilized embryos. Nuclear transfer is another way of reprogramming adult cells into embryonic-like cells, and comparing that approach with iPSC generation may yield important insights into ways of producing the safest and highest quality pluripotent cells for use in patients." Hochedlinger is an associate professor in the Harvard University Department of Stem Cell and Regenerative Medicine.

Efie Apostolou, PhD, of the MGH-CRM and HSCI is also a co-lead author of the Nature report. Additional co-authors are Patricia Follett, MGH-CRM and HSCI; Toshi Shioda, MD, PhD, MGH Cancer Center; Hidenori Akutsu, MD, National Institute for Child Health and Development; Sridaran Natesan, PhD, Sanofi-Aventis and Atsushi Fukuda and Tomohiro Kono, PhD, Tokyo University of Agriculture. Hochedlinger is a Howard Hughes Medical Institute Early Career Scientist and received a Director's Innovator Award from the National Institute of Health. Additional support for the study includes grants from the Schering Foundation, the Jane Coffin Childs Memorial Fund and Sanofi-Aventis.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $600 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>