Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene-Silencing Nanoparticles May Put End to Pesky Summer Pest

21.07.2010
Summer just wouldn't be complete without mosquitoes nipping at exposed skin. Or would it?

Research conducted by a Kansas State University team may help solve a problem that scientists and pest controllers have been itching to for years.

Kun Yan Zhu, professor of entomology, and teammates Xin Zhang, graduate student in entomology from China, and Jianzhen Zhang, a visiting scientist from Shanxi University, China, investigated using nanoparticles to deliver double-stranded ribonucleic acid, dsRNA -- a molecule capable of specifically triggering gene silencing -- into mosquito larvae through their food. By silencing particular genes, Zhu said the dsRNA may kill the developing mosquitoes or make them more susceptible to pesticides.

Gene silencing triggered by dsRNA or small interfering RNA, siRNA, is known as RNA interference, or RNAi.

"RNAi is a specific and effective approach for loss of function studies in virtually all eukaryotic organisms," Zhu said. Eukaryotic organisms have cells that contain a nucleus within which genetic material is carried and can therefore be manipulated. Almost all animals, plants and fungi are eukaryotes.

Once RNAi is triggered, it destroys the messenger RNA, or mRNA, of a particular gene. This prevents the translation of the gene into its product, silencing it. In the case of Zhu's research, RNAi was used to silence genes responsible for the production of chitin, the principle constituent of the exoskeleton in insects, crustaceans and arachnids.

"Since our RNAi is focused on chitin synthesis, the dsRNA that is delivered into the mosquito larvae can basically block the production of chitin," Zhu said.

Though the silencing is not yet 100 percent effective in their study, Zhu said it does leave the mosquito's body with less ability to combat insecticides, which must penetrate the mosquito's exoskeleton. If the gene, called chitin synthase, could be completely silenced, the mosquitoes may die without the use of pesticides because the chitin biosynthesis pathway would be blocked, Zhu said.

Zhu theorized using nanoparticles to deliver dsRNA to mosquito larvae might work because of the low success of manually injecting larvae with dsRNA. Mosquito larvae live in water but because dsRNA quickly dissipates in water, it can't be directly added to the larvae's food source. Zhu's group discovered that using nanoparticles assembled from dsRNA facilitates their ingestion by mosquito larvae because the nanoparticles don't dissolve in water. Zhu said the nanoparticles may also stabilize the dsRNA in water.

"Now insects will have a much greater likelihood of getting these nanoparticles containing the dsRNA into their gut through feeding," Zhu said.

Potentially, bait containing dsRNA-based nanoparticles could be developed for insect control, Zhu said.

"Because we can select specific genes for silencing, and the nanoparticles are formed from chitosan -- a virtually non-toxic and biodegradable polymer -- this pest control technology could target specific pest species while being environmentally friendly," he said.

Mosquitoes were chosen, Zhu said, because of the abundant research on them as human disease vectors. Other insects, though, can have their genes silenced. Zhu and his collaborators also have investigated gene silencing in the European corn borer and in grasshoppers, a major insect pest in China. Nanoparticles did not have to be used because grasshoppers and European corn borers are not aquatic. However, nanoparticle-based RNAi may facilitate the studies on the functions of new genes.

The team's paper, "Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in African malaria mosquito (Anopheles gambiae)," was recently accepted by the journal, Insect Molecular Biology. It has been published online in advance of print.

The research was partially funded by the Kansas Agricultural Experiment Station.

Zhu's upcoming research will focus on gene silencing in agricultural pests.

Kun Yan Zhu, 785-532-4721, kzhu@k-state.edu

Kun Yan Zhu | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>