Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene signature predicts oral cancer recurrence

11.10.2011
Oral Squamous Cell Carcinoma (OSCC) is responsible for nearly a quarter of all head and neck cancers.

It is one of the leading causes of cancer death - largely due to the failure of current histological procedures in predicting the recurrence of the disease. New research published in BioMed Central's open access journal BMC Cancer shows that a four-gene signature may accurately predict which patients are at higher risk of OSCC recurrence.

A team of researchers, including Drs. Patricia Reis and Levi Waldron, and led by Dr Suzanne Kamel-Reid and Dr. Igor Jurisica, from the Ontario Cancer Institute at University Health Network (UHN) Toronto, Canada collected cancerous and noncancerous oral tissue samples from patients with OSCC from Toronto General Hospital at UHN. They then used a meta-analysis of five published microarray studies along with their own microarray analysis to reliably identify 138 genes commonly over-expressed in both OSCC and normal margin tissues. Of these genes, a four-gene signature with the highest predictive risk of recurrence was selected. This signature contained cell invasion related genes MMP1, COL4A1, P4HA2 and THBS2.

The researchers explained, "Our data suggest that histologically normal surgical resection margins that over-express MMP1, COL4A1, THBS2 and P4HA2 are indicative of an increased risk of recurrence in OSCC. Patients at higher risk of recurrence could potentially benefit from closer disease monitoring and/or adjuvant post-operative radiation treatment, even in the absence of other clinical and histopathological indicators. Our findings may be applied to develop a molecular test, which could be clinically useful to help predict which patients are at a higher risk of local recurrence."

... more about:
»BMC »BioMed »Cancer »OSCC »STM »UHN »gene signature

Notes to Editors

1. A gene signature in histologically normal surgical margins is predictive of oral carcinoma recurrence
Patricia P Reis, Levi Waldron, Bayardo Perez-Ordonez, Melania Pintilie, Natalie Naranjo Galloni, Yali Xuan, Nilva K Cervigne, Giles C Warner, Antti A Makitie, Colleen Simpson, David Goldstein, Dale Brown, Ralph Gilbert, Patrick Gullane, Jonathan Irish, Igor Jurisica and Suzanne Kamel-Reid

BMC Cancer (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. BMC Cancer is an Open Access, peer-reviewed journal that considers articles on all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com/

Further reports about: BMC BioMed Cancer OSCC STM UHN gene signature

More articles from Life Sciences:

nachricht eTRANSAFE – collaborative research project aimed at improving safety in drug development process
26.09.2017 | Fraunhofer-Gesellschaft

nachricht Beer can lift your spirits
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>