Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene signature predicts oral cancer recurrence

11.10.2011
Oral Squamous Cell Carcinoma (OSCC) is responsible for nearly a quarter of all head and neck cancers.

It is one of the leading causes of cancer death - largely due to the failure of current histological procedures in predicting the recurrence of the disease. New research published in BioMed Central's open access journal BMC Cancer shows that a four-gene signature may accurately predict which patients are at higher risk of OSCC recurrence.

A team of researchers, including Drs. Patricia Reis and Levi Waldron, and led by Dr Suzanne Kamel-Reid and Dr. Igor Jurisica, from the Ontario Cancer Institute at University Health Network (UHN) Toronto, Canada collected cancerous and noncancerous oral tissue samples from patients with OSCC from Toronto General Hospital at UHN. They then used a meta-analysis of five published microarray studies along with their own microarray analysis to reliably identify 138 genes commonly over-expressed in both OSCC and normal margin tissues. Of these genes, a four-gene signature with the highest predictive risk of recurrence was selected. This signature contained cell invasion related genes MMP1, COL4A1, P4HA2 and THBS2.

The researchers explained, "Our data suggest that histologically normal surgical resection margins that over-express MMP1, COL4A1, THBS2 and P4HA2 are indicative of an increased risk of recurrence in OSCC. Patients at higher risk of recurrence could potentially benefit from closer disease monitoring and/or adjuvant post-operative radiation treatment, even in the absence of other clinical and histopathological indicators. Our findings may be applied to develop a molecular test, which could be clinically useful to help predict which patients are at a higher risk of local recurrence."

... more about:
»BMC »BioMed »Cancer »OSCC »STM »UHN »gene signature

Notes to Editors

1. A gene signature in histologically normal surgical margins is predictive of oral carcinoma recurrence
Patricia P Reis, Levi Waldron, Bayardo Perez-Ordonez, Melania Pintilie, Natalie Naranjo Galloni, Yali Xuan, Nilva K Cervigne, Giles C Warner, Antti A Makitie, Colleen Simpson, David Goldstein, Dale Brown, Ralph Gilbert, Patrick Gullane, Jonathan Irish, Igor Jurisica and Suzanne Kamel-Reid

BMC Cancer (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. BMC Cancer is an Open Access, peer-reviewed journal that considers articles on all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com/

Further reports about: BMC BioMed Cancer OSCC STM UHN gene signature

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>