Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene signature may improve colon cancer treatment

01.03.2010
A gene signature, first identified in mouse colon cancer cells, may help identify patients at risk of colon cancer recurrence, according to a recent study by Vanderbilt-Ingram Cancer Center researchers.

The findings, published in the March issue of Gastroenterology, could help personalize treatments for colon cancer — the second leading cause of cancer-related deaths in the United States — by identifying patients most likely to benefit from chemotherapy.

In its early stages, colorectal cancer is treated with surgery only. However, between 20 percent and 25 percent of patients with Stage II disease (when the tumor has penetrated the muscular wall of the colon) will experience metastatic recurrence after surgical resection alone.

For stage III, when the cancer has spread to the lymph nodes, surgery is generally followed by chemotherapy — despite research showing that about 40 percent of stage III patients treated by surgery alone do not have a recurrence of disease in five years.

This suggests that identifying stage II patients at the greatest risk for recurrence — and targeting adjuvant chemotherapy to them — could decrease recurrences in that group. In addition, those stage III patients at lowest risk, if prospectively identified, could avoid having potentially toxic chemotherapy.

Using a mouse colon cancer cell line, R. Daniel Beauchamp, M.D., the John Clinton Foshee Distinguished Professor of Surgery and chair of the Section of Surgical Sciences, and colleagues identified 300 genes that showed distinct patterns of expression related to their ability to invade into a gel-like matrix, a test that reflects the aggressiveness of cancer cells.

Statistical analysis, led by Yu Shyr, Ph.D., the Ingram Professor of Cancer Research and professor of Biostatistics, helped refine the initial set of 300 genes into a set of 34 genes that were most closely associated with metastasis and death in a set of human colon cancer samples from Vanderbilt patients.

The researchers then examined whether this 34-gene signature could predict recurrence and death in a larger patient population.

In colon cancer tissue samples from 177 patients from the H. Lee Moffitt Cancer Center in Tampa, Fla., the signature identified in the highly invasive mouse cells — the "high recurrence" (or "poor prognosis") signature — was associated with increased risk of recurrence and death across all stages of disease.

Among patients with stage II disease, those with the "poor prognosis" signature had a five-year mortality rate of 31 percent. However, no stage II patients with a "low recurrence" (or "good prognosis") signature died within the five-year period.

In patients with stage III disease, 38 percent of those with a "poor" signature died of their disease within five years, whereas only 10.7 percent of those with a "good" prognosis signature died within that time period.

"Across all stages, if patients had a 'poor' prognosis signature, then they would be five times more likely to have a recurrence of cancer than those with a 'good' prognosis signature," said Beauchamp.

But the most interesting finding, Beauchamp says, is the ability of this gene signature to identify the patients most likely to benefit from chemotherapy.

Among stage III patients with a "poor" prognosis signature, those who had received chemotherapy had a 36 percent cancer-related death rate. Those who did not receive chemotherapy had an 86 percent death rate.

"That tells us that patients with the ('poor' prognosis signature) probably benefited from chemotherapy," Beauchamp said. "And (patients with a 'good' prognosis signature) appeared to get no benefit from chemotherapy."

"This really feeds right into personalized cancer medicine…in identifying subgroups of patients that will benefit from one treatment versus another treatment modality, trying to target those patients that are most likely to benefit…and not exposing patients who are less likely to benefit with potentially toxic treatments," Beauchamp said.

"Ultimately this should lead to more individualized therapy for cancer patients."

The research was supported by grants from National Institutes of Health.

Melissa Marino | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>