Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene signature may improve colon cancer treatment

01.03.2010
A gene signature, first identified in mouse colon cancer cells, may help identify patients at risk of colon cancer recurrence, according to a recent study by Vanderbilt-Ingram Cancer Center researchers.

The findings, published in the March issue of Gastroenterology, could help personalize treatments for colon cancer — the second leading cause of cancer-related deaths in the United States — by identifying patients most likely to benefit from chemotherapy.

In its early stages, colorectal cancer is treated with surgery only. However, between 20 percent and 25 percent of patients with Stage II disease (when the tumor has penetrated the muscular wall of the colon) will experience metastatic recurrence after surgical resection alone.

For stage III, when the cancer has spread to the lymph nodes, surgery is generally followed by chemotherapy — despite research showing that about 40 percent of stage III patients treated by surgery alone do not have a recurrence of disease in five years.

This suggests that identifying stage II patients at the greatest risk for recurrence — and targeting adjuvant chemotherapy to them — could decrease recurrences in that group. In addition, those stage III patients at lowest risk, if prospectively identified, could avoid having potentially toxic chemotherapy.

Using a mouse colon cancer cell line, R. Daniel Beauchamp, M.D., the John Clinton Foshee Distinguished Professor of Surgery and chair of the Section of Surgical Sciences, and colleagues identified 300 genes that showed distinct patterns of expression related to their ability to invade into a gel-like matrix, a test that reflects the aggressiveness of cancer cells.

Statistical analysis, led by Yu Shyr, Ph.D., the Ingram Professor of Cancer Research and professor of Biostatistics, helped refine the initial set of 300 genes into a set of 34 genes that were most closely associated with metastasis and death in a set of human colon cancer samples from Vanderbilt patients.

The researchers then examined whether this 34-gene signature could predict recurrence and death in a larger patient population.

In colon cancer tissue samples from 177 patients from the H. Lee Moffitt Cancer Center in Tampa, Fla., the signature identified in the highly invasive mouse cells — the "high recurrence" (or "poor prognosis") signature — was associated with increased risk of recurrence and death across all stages of disease.

Among patients with stage II disease, those with the "poor prognosis" signature had a five-year mortality rate of 31 percent. However, no stage II patients with a "low recurrence" (or "good prognosis") signature died within the five-year period.

In patients with stage III disease, 38 percent of those with a "poor" signature died of their disease within five years, whereas only 10.7 percent of those with a "good" prognosis signature died within that time period.

"Across all stages, if patients had a 'poor' prognosis signature, then they would be five times more likely to have a recurrence of cancer than those with a 'good' prognosis signature," said Beauchamp.

But the most interesting finding, Beauchamp says, is the ability of this gene signature to identify the patients most likely to benefit from chemotherapy.

Among stage III patients with a "poor" prognosis signature, those who had received chemotherapy had a 36 percent cancer-related death rate. Those who did not receive chemotherapy had an 86 percent death rate.

"That tells us that patients with the ('poor' prognosis signature) probably benefited from chemotherapy," Beauchamp said. "And (patients with a 'good' prognosis signature) appeared to get no benefit from chemotherapy."

"This really feeds right into personalized cancer medicine…in identifying subgroups of patients that will benefit from one treatment versus another treatment modality, trying to target those patients that are most likely to benefit…and not exposing patients who are less likely to benefit with potentially toxic treatments," Beauchamp said.

"Ultimately this should lead to more individualized therapy for cancer patients."

The research was supported by grants from National Institutes of Health.

Melissa Marino | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>