Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene-sequencing tools offer clues to highest-risk form of a childhood cancer

03.12.2012
New gene-sequencing tools offer clues to highest-risk form of a childhood cancer

2 gene mutations I.D.'d in neuroblastoma, says researcher from the Children's Hospital of Philadelphia

Using powerful gene-analysis tools, researchers have discovered mutations in two related genes, ARID1A and ARID1B, that are involved in the most aggressive form of the childhood cancer neuroblastoma. While these findings do not immediately improve clinical treatments, they identify a novel pathway that is defective in these cancers, a pathway that scientists can now study to develop potential new therapies.

"These gene alterations were not previously known to be mutated in neuroblastoma, and they may significantly advance our knowledge of the underlying biological pathways that drive this disease," said study leader Michael D. Hogarty, M.D., a pediatric oncologist at The Children's Hospital of Philadelphia. "These two genes function in a group of genes that seems to play an important role in neural cell behavior, and we will now work to discover if this insight may open up new treatments for children with tumors having these mutations."

Hogarty, along with Victor Velculescu, M.D., Ph.D., of the Johns Hopkins Kimmel Cancer Center, co-led the study that appeared today in Nature Genetics.

The scientists received over $1 million in funding from the St. Baldrick's Foundation, a volunteer-driven and donor-centered charity dedicated to raising money for childhood cancer research.

The current study employed sophisticated next-generation sequencing technology that identified the entire DNA sequence for a set of neuroblastoma tumors. "When this project started, it was the first of its kind to focus on a childhood tumor," said Hogarty. "This is important, because cataloguing all the DNA mutations in neuroblastoma, or any tumor, will allow us to better understand the enemy, and ultimately to make better treatment decisions."

Striking the peripheral nervous system, neuroblastoma usually appears as a solid tumor in the chest or abdomen of young children. It accounts for 7 percent of all childhood cancers, but 10 to 15 percent of all childhood cancer-related deaths.

In the current study, Hogarty and colleagues identified alterations in two genes, ARID1A and ARID1B, neither of which had previously been reported to be involved in neuroblastoma. Both genes are thought to affect chromatin, a combination of DNA and protein that regulates the activities of genes and ultimately controls the behavior of a cell. During normal development, neural cells switch from a primitive, rapidly dividing state (neuroblasts) into a more differentiated, or mature state (neurons).

However, said Hogarty, mutations in ARID1A and ARID1B may prevent this orderly transition, keeping the neural cells in the uncontrolled stage of growth that becomes a cancerous tumor. "Unfortunately, children with these mutations have a particularly aggressive, treatment-resistant form of neuroblastoma," he added. The current study found that ARID1A and ARID1B mutations occur in 5 to 15 percent of high-risk neuroblastomas, but the pathway these genes affect may have a broader role in the disease—a possibility that Hogarty and colleagues plan to investigate further. It is possible that children having tumors with these mutations will receive more aggressive or more experimental treatments in the future.

Ultimately, said Hogarty, studies of the pathway affected by these genes may lay the foundation for future targeted therapies aimed at this pathway.

In the current study, the scientists also developed an approach that detects the tumor DNA abnormalities in the blood. "All tumors harbor genetic mistakes that leave a fingerprint in the DNA, and tumor DNA is often detected in the blood as well," he explained. "We may be able to develop a blood test, personalized to each cancer patient, to detect their tumor fingerprint in circulating blood DNA. This would permit oncologists to more accurately monitor patients for treatment response and recurrence, and offer a tool to help guide treatment decisions."

In addition to funding from St. Baldrick's, this study also received support from the National Institutes of Health (grant CA121113), the Children's Oncology Group, the Virginia and D.K. Ludwig Fund for Cancer Research, Swim Across America, and the AACR Stand Up to Cancer-Dream Team Translational Cancer Research Grant.

"Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma," Nature Genetics, advance online publication, Dec. 2, 2012. doi: 10.1038/ng.2493

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking third in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 516-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu.

Rachel Salis-Silverman | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht New gene catalog of ocean microbiome reveals surprises
18.08.2017 | University of Hawaii at Manoa

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>