Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Sequencing Project Mines Data Once Considered ’Junk’ for Clues About Cancer

28.01.2013
St. Jude Children’s Research Hospital – Washington University Pediatric Cancer Genome Project takes new approach to measuring the repetitive DNA at the end of chromosomes and opens new window on mechanisms fueling cancer

Genome sequencing data once regarded as junk is now being used to gain important clues to help understand disease. The latest example comes from the St. Jude Children’s Research Hospital – Washington University Pediatric Cancer Genome Project, where scientists have developed an approach to mine the repetitive segments of DNA at the ends of chromosomes for insights into cancer.

These segments, known as telomeres, had previously been ignored in next-generation sequencing efforts. That is because their repetitive nature meant that the resulting information had defied analysis and the data were labeled as junk. But researchers have now traced changes in the volume of telomeric DNA to particular types of cancer and their underlying genetic mistakes. Investigators found that 32 percent of pediatric solid tumors carried extra DNA for telomeres, compared to just 4 percent of brain tumors and none of the leukemia samples studied. The findings were published recently in the journal Genome Biology.

Using this new approach, the investigators have linked changes in telomeric DNA to mutations in the ATRX gene and to longer telomeres in patients with a subtype of neuroblastoma, a cancer of the sympathetic nervous system. Telomere length limits how many times cells can divide. Mechanisms that maintain or lengthen telomeres contribute to the unchecked cell division that is a hallmark of cancer.

“This paper shows how measuring the DNA content of telomeres can enhance the value of whole- genome sequencing,” said Matthew Parker, Ph.D., the paper’s first author and a St. Jude postdoctoral fellow. “In the case of the ATRX mutation, the telomere findings gave us information about the mutation’s impact that would have been hard to get through other means.”

The results stem from the largest study yet of whole-genome sequencing to measure the content of telomeric DNA. The effort involved whole-genome sequencing of normal and tumor DNA from 235 pediatric patients battling 13 different cancers. For comparison, normal DNA from 13 adult cancer patients was included in the research.

“There’s been a lot of interest among cancer researchers into telomere length,” said Richard Wilson, Ph.D., director of The Genome Institute at Washington University School of Medicine in St. Louis. “While more research remains, we think it’s important to begin to characterize the genetic sequences that make up the telomeres. That’s a crucial first step to understanding more precisely any role they may play in cancer.”

The Pediatric Cancer Genome Project sequenced the complete normal and cancer genomes of more than 600 children and adolescents with some of the most aggressive and least understood cancers. Investigators believe the project’s findings will lay the foundation for a new generation of clinical tools. Despite advances, cancer remains the leading cause of death by disease of U.S. children age 1 and older.

The human genome is stored in the four-letter chemical alphabet of DNA, a molecule that stretches more than 3 billion characters in length and provides the instructions for building and sustaining life. Those instructions are the genes that are organized into the 46 chromosomes found in almost every cell.

Each chromosome ends with the same six-letter DNA sequence that is associated exclusively with telomeres. The DNA sequence does not vary, but the number of times it is repeated does, affecting the length of the telomeres. Telomeres shorten each time cells divide, which explains why their length declines naturally with age.

Researchers have known cancer cells use several mechanisms to circumvent the process and keep dividing. But until now the repetitive nature of the telomeric DNA sequence meant they had little to offer researchers using whole-genome sequencing to map the human genome. Other genes can be assigned to a particular spot on a particular chromosome; telomeres cannot.

“For scientists analyzing whole-genome sequencing data the telomeres were just a headache,” said the study’s corresponding author Jinghui Zhang, Ph.D., an associate member of the St. Jude Department of Computational Biology. “We could not properly map them to a position on the human genome, so we didn’t really use them.”

Then listening to a colleague’s presentation, Parker had an idea: “Why not just count the telomeric DNA and look for changes between the normal and cancer cells of patients?”

Zhang said the question was a conceptual leap in thinking about how to use whole-genome sequencing data to study telomeres and cancer. “This is the classic story of how one person’s problem is another person’s gold,” she said.

Parker and his colleagues developed an approach that correctly distinguished between older and younger individuals based on the amount of telomeric DNA in their blood or bone marrow cells. Researchers used three other methods to confirm that whole-genome sequencing could be used to reliably capture telomeric DNA differences between normal and cancer cells. Additional supportive evidence came when investigators found that the method yielded similar estimates of the telomeric DNA content of twins with leukemia who shared similar genetic alterations.

When investigators used the method to study pediatric cancer patients, they found tumors that gained telomeric DNA were also more likely to contain chromosomal abnormalities, including rearrangements within and between chromosomes. Researchers also found that different cancers had distinct patterns of telomeric DNA change. In some cases, the change offered clues about the mechanism responsible for lengthening the telomeres, pointing to a process called alternative lengthening of telomeres.

The other authors are Xiang Chen, Armita Bahrami, James Dalton, Michael Rusch, Gang Wu, John Easton, Michael Dyer, Charles Mullighan, Richard Gilbertson, Suzanne Baker, Gerard Zambetti, David Ellison and James Downing, all of St. Jude; Nai-Kong Cheung, Memorial Sloan-Kettering Cancer Center, New York; and Elaine Mardis, of The Genome Institute at Washington University, St. Louis.

The research was funded in part by the Pediatric Cancer Genome Project, including Kay Jewelers, a lead partner; a Cancer Center Support Grant (CA021765) from the National Cancer Institute at the National Institutes of Health; the Henry Schueler 41&9 Foundation in conjunction with Partnership4Cures; and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other life-threatening diseases. The hospital’s research has helped push overall survival rates for childhood cancer from less than 20 percent when the institution opened to almost 80 percent today. It is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children, and no family ever pays St. Jude for anything. For more information, visit www.stjude.org. Follow us on Twitter @StJudeResearch.
Washington University School of Medicine
Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.
St. Jude Media Relations Contacts:
Carrie Strehlau
(desk) 901-595-2295
(cell) 901-297-9875
carrie.strehlau@stjude.org
Summer Freeman
(desk) 901- 595-3061
(cell) 901-297-9861
summer.freeman@stjude.org
Washington University Media Relations Contact:
Caroline Arbanas
(cell) 314-445-4172
(desk) 314-286-0109
arbanasc@wustl.edu

Carrie Strehlau | Newswise
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>