Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel gene-searching software improves accuracy in disease studies

23.01.2013
Children's Hospital of Philadelphia scientist develops versatile tool for finding disease-causing CNVs

A novel software tool, developed at The Children's Hospital of Philadelphia, streamlines the detection of disease-causing genetic changes through more sensitive detection methods and by automatically correcting for variations that reduce the accuracy of results in conventional software.

The software, called ParseCNV, is freely available to the scientific-academic community, and significantly advances the identification of gene variants associated with genetic diseases.

"The algorithm we developed detects copy number variation associations with a higher level of accuracy than that available in existing software," said the lead inventor of ParseCNV, Joseph T. Glessner, of the Center for Applied Genomics at The Children's Hospital of Philadelphia. "By automatically correcting for variations in the length of deleted or duplicated DNA sequences from one individual to another, ParseCNV produces high-quality, highly replicable results for researchers studying genetic contributions to disease."

Glessner is the lead author of a study describing ParseCNV, published Jan. 4 in Nucleic Acids Research.

Copy number variations (CNVs) are particular sequences of DNA, ranging in length from 1000 to millions of nucleotide bases, which may be deleted or duplicated. While in any given region of a person's DNA, CNVs are very rare, everyone's genome has CNVs, many of which play important roles in causing or influencing disease.

In searching for associations between CNVs and diseases, researchers typically perform case-control studies, comparing DNA samples from patients to DNA from healthy individuals, looking for telltale differences in how CNVs are overrepresented or underrepresented.

CNVs, however, occur in multiple types among individuals, said senior author Hakon Hakonarson, M.D., Ph.D., director of the Center for Applied Genomics at The Children's Hospital of Philadelphia. "One person may have a 60-kilobase deletion, while another may have a 100-kilobase deletion; that may determine the difference between a healthy state versus disease. Many CNV detection softwares may misread the boundary of a CNV region, which could lead to a misclassification and result in false-positive or false-negative associations."

ParseCNV is designed with built-in corrections to adjust for these size variations and other red flags that confound results. Using polymerase chain reaction testing to validate the initial findings, the study team determined that the software had called 90 percent of the CNVs accurately—a better rate than conventional CNV association softwares, which typically produce validation rates that are notably lower.

The authors say the program's comprehensive design, statistical capabilities, and quality-control features lend it versatility, applicable not just to case-control studies, but also to family studies, and quantitative analyses of continuous traits, such as obesity or height.

Glessner says the Center for Applied Genomics team will continue to refine ParseCNV's features as CNV research progresses. Hakonarson adds that the ParseCNV algorithm will advance genomic diagnostics: "It is likely to play a future key role as a research tool in improving detection of CNV association in individual patients enrolled in disease studies—perhaps through an initial diagnostic screen, to be followed up with a CLIA-certified laboratory test."

An Institutional Development Award from The Children's Hospital of Philadelphia supported this research, along with the Cotswold Foundation and a donation from Adele and Daniel Kubert. The third co-author, also from the Children's Hospital genome center, was Jin Li.

"ParseCNV integrative copy number variation association software with quality tracking," Nucleic Acids Research, published online Jan. 4, 2013. http://dx.doi.org/10.1093/nar/gks1346

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking third in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 516-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht Great apes communicate cooperatively
25.05.2016 | Max-Planck-Institut für Ornithologie

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>