Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel gene-searching software improves accuracy in disease studies

Children's Hospital of Philadelphia scientist develops versatile tool for finding disease-causing CNVs

A novel software tool, developed at The Children's Hospital of Philadelphia, streamlines the detection of disease-causing genetic changes through more sensitive detection methods and by automatically correcting for variations that reduce the accuracy of results in conventional software.

The software, called ParseCNV, is freely available to the scientific-academic community, and significantly advances the identification of gene variants associated with genetic diseases.

"The algorithm we developed detects copy number variation associations with a higher level of accuracy than that available in existing software," said the lead inventor of ParseCNV, Joseph T. Glessner, of the Center for Applied Genomics at The Children's Hospital of Philadelphia. "By automatically correcting for variations in the length of deleted or duplicated DNA sequences from one individual to another, ParseCNV produces high-quality, highly replicable results for researchers studying genetic contributions to disease."

Glessner is the lead author of a study describing ParseCNV, published Jan. 4 in Nucleic Acids Research.

Copy number variations (CNVs) are particular sequences of DNA, ranging in length from 1000 to millions of nucleotide bases, which may be deleted or duplicated. While in any given region of a person's DNA, CNVs are very rare, everyone's genome has CNVs, many of which play important roles in causing or influencing disease.

In searching for associations between CNVs and diseases, researchers typically perform case-control studies, comparing DNA samples from patients to DNA from healthy individuals, looking for telltale differences in how CNVs are overrepresented or underrepresented.

CNVs, however, occur in multiple types among individuals, said senior author Hakon Hakonarson, M.D., Ph.D., director of the Center for Applied Genomics at The Children's Hospital of Philadelphia. "One person may have a 60-kilobase deletion, while another may have a 100-kilobase deletion; that may determine the difference between a healthy state versus disease. Many CNV detection softwares may misread the boundary of a CNV region, which could lead to a misclassification and result in false-positive or false-negative associations."

ParseCNV is designed with built-in corrections to adjust for these size variations and other red flags that confound results. Using polymerase chain reaction testing to validate the initial findings, the study team determined that the software had called 90 percent of the CNVs accurately—a better rate than conventional CNV association softwares, which typically produce validation rates that are notably lower.

The authors say the program's comprehensive design, statistical capabilities, and quality-control features lend it versatility, applicable not just to case-control studies, but also to family studies, and quantitative analyses of continuous traits, such as obesity or height.

Glessner says the Center for Applied Genomics team will continue to refine ParseCNV's features as CNV research progresses. Hakonarson adds that the ParseCNV algorithm will advance genomic diagnostics: "It is likely to play a future key role as a research tool in improving detection of CNV association in individual patients enrolled in disease studies—perhaps through an initial diagnostic screen, to be followed up with a CLIA-certified laboratory test."

An Institutional Development Award from The Children's Hospital of Philadelphia supported this research, along with the Cotswold Foundation and a donation from Adele and Daniel Kubert. The third co-author, also from the Children's Hospital genome center, was Jin Li.

"ParseCNV integrative copy number variation association software with quality tracking," Nucleic Acids Research, published online Jan. 4, 2013.

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking third in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 516-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit

John Ascenzi | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>