Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene screen to identify causes of autism

16.10.2008
A new screening method can be used to detect the chromosomal abnormalities most commonly associated with autism spectrum disorders.

By screening for genetic defects associated with various kinds of cognitive impairment, the approach described in the open access journal BMC Medical Genomics will help clinicians identify the underlying causes of some patients’ autism spectrum disorders (ASDs).

Joseph Buxbaum from Mount Sinai School of Medicine, New York, led a team of researchers tasked with evaluating the use of ‘multiplex ligation-dependent probe amplification’ (MLPA), a recently developed method of investigating DNA, in genetic counselling. He said, “MLPA is a relatively practical, inexpensive and fast tool for screening chromosome rearrangements in autism spectrum disorders”.

ASDs have been increasingly associated with genetic abnormalities. At the same time, many children with ASDs also have some degree of cognitive impairment. In this study, the authors used MLPA on a group of 279 children with ASD, looking for abnormalities that are known to be associated with cognitive impairment. As Buxbaum describes, “By focussing on well-known genetic disorders, rather than assaying an individual’s entire genome, MLPA allows for much more efficiency”. As additional genetic abnormalities associated with ASDs are identified, additional probes can be used in future screens.

As well as demonstrating the effectiveness of MLPA as a screen for known genetic disorders, the authors also identified some new genetic changes that are likely to contribute to ASD, such as novel duplications (extra copies of genetic material) in chromosomes 15 and 22, which may increase liability and/or exacerbate ASD symptoms.

Although there is no known cure for ASDs, early detection and commencement of special education and behavioural therapy can mitigate some of the negative symptoms.

Graeme Baldwin | alfa
Further information:
http://www.biomedcentral.com/bmcmedgenomics/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>