Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene regulator is key to healthy retinal development and good vision in adulthood

09.08.2013
Animal study reveals “unexpected” role of horizontal cells in photoreceptor rod and cone cell development of retina

Scientists are developing a clearer picture of how visual systems develop in mammals. The findings offer important clues to the origin of retinal disorders later in life.


Confocal microscope images show far fewer horizontal cells generated in mice without Onecut1 (bottom panels) compared to those in normal mice (top panels).

In research published this week in the Journal of Neuroscience, University at Buffalo scientists and colleagues focused on a particular protein, called a transcription factor, that regulates gene activity necessary for the development of one type of retinal neuron, the horizontal cells.

Horizontal cells process visual information by integrating and regulating input from rod and cone photoreceptors, which allow eyes to adjust to see well in both bright and dim light conditions.

“We have found that activation of the transcription factor named Onecut1 is essential for the formation of horizontal cells,” explains Xiuqian Mu, PhD, assistant professor in the departments of Ophthalmology and Biochemistry in the UB School of Medicine and Biomedical Sciences.

The researchers came to this conclusion after creating mice that lacked Onecut1. In these knockout mice, the number of horizontal cells was 80 percent lower than in normal mice.

The researchers were surprised to find that the removal of Onecut1 also had an impact on photoreceptor cells, the rods and cones that absorb light in the retina and convert that energy to an electrical impulse eventually conveyed to the brain.

During development, Mu explains, the removal of Onecut1 only appeared to impact the horizontal cells. However, by the time these mice reached adulthood, around 8 months old, the level of photoreceptor cells in these knockout mice was less than half the normal level.

“Because degradation of photoreceptors is believed to be a major factor in retinal diseases, such as retinitis pigmentosa and Leber’s congenital amaurosis, this finding, that horizontal cells are necessary for the normal survival of photoreceptor cells, is novel and significant,” says Mu. “Many retinal diseases are manifested by the degeneration of photoreceptor cells.”

This finding was unexpected, Mu explains, because most investigations into the degeneration of photoreceptor cells have involved genes that directly affect photoreceptor cell development.

“People haven’t been looking at horizontal cells,” he says. “We didn’t think that they’d be involved in photoreceptor cell degradation.

“With this finding, we have discovered that retinal horizontal cells are required for maintaining the integrity of the retina and that their deficiency can lead to retinal degradation,” explains Mu.

He notes that in most cases where photoreceptor cells die, it’s because they are somehow defective.

“But in this case, the photoreceptor cells are fine in the beginning, so the death of the photoreceptor cells is a secondary affair that is somehow driven by the deficiency in horizontal cells,” he says.

UB co-author Steven J. Fliesler, PhD, Meyer H. Riwchun Endowed Chair Professor, vice-chair and director of research in the Department of Ophthalmology and professor in the Department of Biochemistry, notes that this finding could open up a new area of study.

“One scenario we have speculated upon is that there are important supportive interactions between horizontal cells and photoreceptors that are required to maintain photoreceptor function and viability,” Fliesler says. “When horizontal cells are blocked from being formed -- the immediate consequence of knocking out Onecut1 -- the photoreceptors don't get what they need to survive, so they degenerate and die later on.”

The majority of the research was conducted in the UB Department of Ophthalmology/Ross Eye Institute and the developmental genomics group at UB’s New York State Center of Excellence in Bioinformatics and Life Sciences.

First author on the paper is Fuguo Wu of UB. Other UB co-authors are Renzhong Li, Tadeusz J. Kaczynski, Darshan Sapkota. Additional co-authors are Yumiko Umino and Eduardo Solessio of SUNY Upstate Medical University, Shengguo Li and Mengqing Xiang of the University of Medicine and Dentistry of New Jersey, David M. Sherry of the University of Oklahoma Health Sciences Center and Maureen Gannon of Vanderbilt University Medical Center.

Mu, Fliesler and Solessio also are faculty members of the SUNY Eye Institute, a SUNY-wide eye research consortium.

The work was supported by the Whitehall Foundation, the National Eye Institute, the SUNY/RF Research Collaboration Fund, Research to Prevent Blindness, the Oklahoma Center for the Advancement of Science and Technology, the Lions of Central New York, and resources and facilities provided by the Veterans Administration Western NY Healthcare System.

Media Contact Information
Ellen Goldbaum
Senior Editor, Medicine
Tel: 716-645-4605
goldbaum@buffalo.edu
Twitter: @egoldbaum

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>