Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene regulator is key to healthy retinal development and good vision in adulthood

09.08.2013
Animal study reveals “unexpected” role of horizontal cells in photoreceptor rod and cone cell development of retina

Scientists are developing a clearer picture of how visual systems develop in mammals. The findings offer important clues to the origin of retinal disorders later in life.


Confocal microscope images show far fewer horizontal cells generated in mice without Onecut1 (bottom panels) compared to those in normal mice (top panels).

In research published this week in the Journal of Neuroscience, University at Buffalo scientists and colleagues focused on a particular protein, called a transcription factor, that regulates gene activity necessary for the development of one type of retinal neuron, the horizontal cells.

Horizontal cells process visual information by integrating and regulating input from rod and cone photoreceptors, which allow eyes to adjust to see well in both bright and dim light conditions.

“We have found that activation of the transcription factor named Onecut1 is essential for the formation of horizontal cells,” explains Xiuqian Mu, PhD, assistant professor in the departments of Ophthalmology and Biochemistry in the UB School of Medicine and Biomedical Sciences.

The researchers came to this conclusion after creating mice that lacked Onecut1. In these knockout mice, the number of horizontal cells was 80 percent lower than in normal mice.

The researchers were surprised to find that the removal of Onecut1 also had an impact on photoreceptor cells, the rods and cones that absorb light in the retina and convert that energy to an electrical impulse eventually conveyed to the brain.

During development, Mu explains, the removal of Onecut1 only appeared to impact the horizontal cells. However, by the time these mice reached adulthood, around 8 months old, the level of photoreceptor cells in these knockout mice was less than half the normal level.

“Because degradation of photoreceptors is believed to be a major factor in retinal diseases, such as retinitis pigmentosa and Leber’s congenital amaurosis, this finding, that horizontal cells are necessary for the normal survival of photoreceptor cells, is novel and significant,” says Mu. “Many retinal diseases are manifested by the degeneration of photoreceptor cells.”

This finding was unexpected, Mu explains, because most investigations into the degeneration of photoreceptor cells have involved genes that directly affect photoreceptor cell development.

“People haven’t been looking at horizontal cells,” he says. “We didn’t think that they’d be involved in photoreceptor cell degradation.

“With this finding, we have discovered that retinal horizontal cells are required for maintaining the integrity of the retina and that their deficiency can lead to retinal degradation,” explains Mu.

He notes that in most cases where photoreceptor cells die, it’s because they are somehow defective.

“But in this case, the photoreceptor cells are fine in the beginning, so the death of the photoreceptor cells is a secondary affair that is somehow driven by the deficiency in horizontal cells,” he says.

UB co-author Steven J. Fliesler, PhD, Meyer H. Riwchun Endowed Chair Professor, vice-chair and director of research in the Department of Ophthalmology and professor in the Department of Biochemistry, notes that this finding could open up a new area of study.

“One scenario we have speculated upon is that there are important supportive interactions between horizontal cells and photoreceptors that are required to maintain photoreceptor function and viability,” Fliesler says. “When horizontal cells are blocked from being formed -- the immediate consequence of knocking out Onecut1 -- the photoreceptors don't get what they need to survive, so they degenerate and die later on.”

The majority of the research was conducted in the UB Department of Ophthalmology/Ross Eye Institute and the developmental genomics group at UB’s New York State Center of Excellence in Bioinformatics and Life Sciences.

First author on the paper is Fuguo Wu of UB. Other UB co-authors are Renzhong Li, Tadeusz J. Kaczynski, Darshan Sapkota. Additional co-authors are Yumiko Umino and Eduardo Solessio of SUNY Upstate Medical University, Shengguo Li and Mengqing Xiang of the University of Medicine and Dentistry of New Jersey, David M. Sherry of the University of Oklahoma Health Sciences Center and Maureen Gannon of Vanderbilt University Medical Center.

Mu, Fliesler and Solessio also are faculty members of the SUNY Eye Institute, a SUNY-wide eye research consortium.

The work was supported by the Whitehall Foundation, the National Eye Institute, the SUNY/RF Research Collaboration Fund, Research to Prevent Blindness, the Oklahoma Center for the Advancement of Science and Technology, the Lions of Central New York, and resources and facilities provided by the Veterans Administration Western NY Healthcare System.

Media Contact Information
Ellen Goldbaum
Senior Editor, Medicine
Tel: 716-645-4605
goldbaum@buffalo.edu
Twitter: @egoldbaum

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>