Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene that regulates hair growth identified

15.04.2010
Activation of the gene Lhx2 leads to increased hair growth. This is shown by Leif Carlsson's research team at Umeå University in Sweden in an article in the latest Web edition of the respected scientific journal PLoS Genetics. The findings partly refute earlier research results in the field.

Hair is important for temperature regulation, physical protection, sensory activity, seasonal camouflage, and social interactions. Hair is formed in hair follicles, which are complex mini-organs in the skin that are specialized for this purpose.

All hair follicles are formed during fetal development, then new hair is generated in the hair follicle by continually undergoing phases of recession, rest, and growth throughout life. The length of the hair is determined by the duration of the growth phase; for example, the growth phase for scalp hair can proceed for a number of years, while the growth phase for eyebrows last a few months.

After the growth phase, hair formation ceases, and the follicle recedes and enters a period of rest. After a period of rest, a new growth period starts, and the old hair is ejected and lost from the body. The reason for this complex regulation of hair growth is not understood, but it has been suggested that it makes it possible to adjust hair growth to the season.

In the present study Leif Carlsson's research team identifies the transcription factor Lhx2 as an important regulator of hair formation. The Lhx2 gene is active during the hair follicle's growth phase and is turned off during the resting period. The scientists have been able to show that Lhx2 is functionally involved in the formation of hair, as hair follicles in which Lhx2 has been inactivated cannot produce hair. Moreover, the activation of the Lhx2 gene in hair follicles has been shown to activate the growth phase and hence the formation of hair. Thus, Lhx2 is a gene that is important for the regulation of hair growth.

In stark contrast to previously published research findings from other teams of scientists, Leif Carlsson and his colleagues found that Lhx2 is primarily expressed outside the so-called bulge region of the hair follicle, where the follicle's stem cells are found. The Umeå researchers have also shown that Lhx2 is necessary for the hair follicle's growth (anagen) phase to proceed and for the hair follicle's structuring. Moreover, transgenic expression of Lhx2 after birth is sufficient to activate the growth phase and stimulate hair growth.

These findings allow for an alternative interpretation of the function of Lhx2 in hair follicles compared with previous results. Lhx2 is expressed periodically, primarily in precursor cells that are distinct from the cells in the bulging region of the follicles. It is a factor that is necessary for hair to be formed and to grow.

Article in Plos: Cyclic Expression of Lhx2 Regulates Hair Formation.
Gunilla Törnqvist, Anna Sandberg, Anna-Carin Hägglund, Leif Carlsson
For more information, please contact Professor Leif Carlsson, Umeå Center for Molecular Medicine (UCMM), Umeå University at:

Phone: +46 (0)90-785 44 36 ; Mobile: +46 (0)70-374 79 51 ; E-mail leif.carlsson@ucmm.umu.se

Pressofficer Hans Fällman; hans.fallman@adm.umu.se; +46-70 691 28 29

Hans Fällman | idw
Further information:
http://www.vr.se
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000904

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>