Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene that regulates hair growth identified

15.04.2010
Activation of the gene Lhx2 leads to increased hair growth. This is shown by Leif Carlsson's research team at Umeå University in Sweden in an article in the latest Web edition of the respected scientific journal PLoS Genetics. The findings partly refute earlier research results in the field.

Hair is important for temperature regulation, physical protection, sensory activity, seasonal camouflage, and social interactions. Hair is formed in hair follicles, which are complex mini-organs in the skin that are specialized for this purpose.

All hair follicles are formed during fetal development, then new hair is generated in the hair follicle by continually undergoing phases of recession, rest, and growth throughout life. The length of the hair is determined by the duration of the growth phase; for example, the growth phase for scalp hair can proceed for a number of years, while the growth phase for eyebrows last a few months.

After the growth phase, hair formation ceases, and the follicle recedes and enters a period of rest. After a period of rest, a new growth period starts, and the old hair is ejected and lost from the body. The reason for this complex regulation of hair growth is not understood, but it has been suggested that it makes it possible to adjust hair growth to the season.

In the present study Leif Carlsson's research team identifies the transcription factor Lhx2 as an important regulator of hair formation. The Lhx2 gene is active during the hair follicle's growth phase and is turned off during the resting period. The scientists have been able to show that Lhx2 is functionally involved in the formation of hair, as hair follicles in which Lhx2 has been inactivated cannot produce hair. Moreover, the activation of the Lhx2 gene in hair follicles has been shown to activate the growth phase and hence the formation of hair. Thus, Lhx2 is a gene that is important for the regulation of hair growth.

In stark contrast to previously published research findings from other teams of scientists, Leif Carlsson and his colleagues found that Lhx2 is primarily expressed outside the so-called bulge region of the hair follicle, where the follicle's stem cells are found. The Umeå researchers have also shown that Lhx2 is necessary for the hair follicle's growth (anagen) phase to proceed and for the hair follicle's structuring. Moreover, transgenic expression of Lhx2 after birth is sufficient to activate the growth phase and stimulate hair growth.

These findings allow for an alternative interpretation of the function of Lhx2 in hair follicles compared with previous results. Lhx2 is expressed periodically, primarily in precursor cells that are distinct from the cells in the bulging region of the follicles. It is a factor that is necessary for hair to be formed and to grow.

Article in Plos: Cyclic Expression of Lhx2 Regulates Hair Formation.
Gunilla Törnqvist, Anna Sandberg, Anna-Carin Hägglund, Leif Carlsson
For more information, please contact Professor Leif Carlsson, Umeå Center for Molecular Medicine (UCMM), Umeå University at:

Phone: +46 (0)90-785 44 36 ; Mobile: +46 (0)70-374 79 51 ; E-mail leif.carlsson@ucmm.umu.se

Pressofficer Hans Fällman; hans.fallman@adm.umu.se; +46-70 691 28 29

Hans Fällman | idw
Further information:
http://www.vr.se
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000904

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>