Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene that regulates hair growth identified

Activation of the gene Lhx2 leads to increased hair growth. This is shown by Leif Carlsson's research team at Umeå University in Sweden in an article in the latest Web edition of the respected scientific journal PLoS Genetics. The findings partly refute earlier research results in the field.

Hair is important for temperature regulation, physical protection, sensory activity, seasonal camouflage, and social interactions. Hair is formed in hair follicles, which are complex mini-organs in the skin that are specialized for this purpose.

All hair follicles are formed during fetal development, then new hair is generated in the hair follicle by continually undergoing phases of recession, rest, and growth throughout life. The length of the hair is determined by the duration of the growth phase; for example, the growth phase for scalp hair can proceed for a number of years, while the growth phase for eyebrows last a few months.

After the growth phase, hair formation ceases, and the follicle recedes and enters a period of rest. After a period of rest, a new growth period starts, and the old hair is ejected and lost from the body. The reason for this complex regulation of hair growth is not understood, but it has been suggested that it makes it possible to adjust hair growth to the season.

In the present study Leif Carlsson's research team identifies the transcription factor Lhx2 as an important regulator of hair formation. The Lhx2 gene is active during the hair follicle's growth phase and is turned off during the resting period. The scientists have been able to show that Lhx2 is functionally involved in the formation of hair, as hair follicles in which Lhx2 has been inactivated cannot produce hair. Moreover, the activation of the Lhx2 gene in hair follicles has been shown to activate the growth phase and hence the formation of hair. Thus, Lhx2 is a gene that is important for the regulation of hair growth.

In stark contrast to previously published research findings from other teams of scientists, Leif Carlsson and his colleagues found that Lhx2 is primarily expressed outside the so-called bulge region of the hair follicle, where the follicle's stem cells are found. The Umeå researchers have also shown that Lhx2 is necessary for the hair follicle's growth (anagen) phase to proceed and for the hair follicle's structuring. Moreover, transgenic expression of Lhx2 after birth is sufficient to activate the growth phase and stimulate hair growth.

These findings allow for an alternative interpretation of the function of Lhx2 in hair follicles compared with previous results. Lhx2 is expressed periodically, primarily in precursor cells that are distinct from the cells in the bulging region of the follicles. It is a factor that is necessary for hair to be formed and to grow.

Article in Plos: Cyclic Expression of Lhx2 Regulates Hair Formation.
Gunilla Törnqvist, Anna Sandberg, Anna-Carin Hägglund, Leif Carlsson
For more information, please contact Professor Leif Carlsson, Umeå Center for Molecular Medicine (UCMM), Umeå University at:

Phone: +46 (0)90-785 44 36 ; Mobile: +46 (0)70-374 79 51 ; E-mail

Pressofficer Hans Fällman;; +46-70 691 28 29

Hans Fällman | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>