Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Gene to Protein – New Insights of MDC/BIMBS Researchers

19.05.2011
How do genes control us? This fundamental question of life still remains elusive despite decades of research. Genes are blueprints for proteins, but it is the proteins that actually carry out vital functions in the body for maintaining life.
Diseases such as cancer are characterized by altered genes, but also by disturbed protein production. But how is protein production controlled? Researchers of the Max Delbrück Center (MDC), Germany, have now comprehensively quantified gene expression for the first time. According to their latest findings, control mainly occurs in the cytoplasm of the cell and not in the ‘high-security tract’ of the cell nucleus (Nature doi:10.1038/nature10098)*.

Corrected 2nd paragraph with additions

The results also highlight where gene expression can get out of control. The research was enabled by the close collaboration of a team led by the biologists Björn Schwanhäusser, Matthias Selbach, the systems biologist Jana Wolf and the biologist Wei Chen of the Berlin Institute for Medical Systems Biology (BIMSB) of the MDC (Nature doi:10.1038/nature10098)*.The Berlin Institute for Medical Systems Biology (BIMSB) was launched by the MDC in 2008, supported by start-up funding from the Federal Ministry of Education and Research (BMBF) and the Senate of Berlin. The focus of Medical Systems Biology is not on genes and their proteins as isolated components, but on their regulation and their interaction with each other and on their relevance for disease processes. Since its inception, the internationally renowned BIMSB has become a beacon in the Berlin research landscape. It works closely with other institutions in numerous research networks and participates in excellence clusters with the Berlin universities, collaborating in particular with Humboldt University and Charité – Universitätsmedizin Berlin and also with New York University.

Proteins are the major building blocks of life. “They control virtually all biological processes ranging from heartbeat and oxygen transport up to and including thinking,” Matthias Selbach explained. The blueprint for proteins is stored in the genes in the cell nucleus. The messenger RNA (mRNA) formed in the cell nucleus (transcription) brings a copy of the blueprint to the protein factories of the cell in the cytoplasm, to the ribosomes. There the information of the mRNAs is used for protein production (translation). The fundamental question was which of the two processes, i.e. transcription or translation, plays the dominant role in regulating cellular protein levels.

The starting point of the MDC researchers was to measure the turnover of cellular mRNAs and proteins and mRNA and protein levels. They used high-throughput technologies such as quantitative mass spectrometry and the latest sequencing techniques, which are available close by at the MDC / BIMSB. In total, they quantified proteins and mRNAs for more than 5,000 genes. By means of mathematical modeling, the researchers drew conclusions from the collected data about the control of protein levels. Intriguingly, they observed that cellular protein levels mainly depend on translation of mRNAs in the protein factories of the cytoplasm. “The ribosomes ultimately determine protein abundance. Some mRNAs are translated into only one protein per hour, others are translated 200 times,” Matthias Selbach said.

Cells work in an energy-efficient way
Furthermore, the researchers found that cells use their resources very efficiently. Most mRNAs and proteins of abundantly expressed housekeeping genes (these genes maintain the normal operations of the body) are very stable. In this way the cell saves valuable energy, because protein production consumes many resources. In contrast, proteins responsible for rapid signaling processes are typically unstable. Cells can therefore quickly adapt to changes in their surroundings. This may also explain why the decisive control step takes place in the cytoplasm and not in the nucleus. Since it constitutes the last step in the production chain, this allows cells to respond dynamically to their environment.

The researchers hope their results will also be relevant for diseases. "So far, this is purely basic research,” Matthias Selbach stressed. "But we also know that the production of proteins is disturbed in many diseases, for example cancer." Very little is known about where the process gets out of control. Until now, researchers focused almost exclusively on the nucleus to find answers to this question. The new findings, however, show that the protein factories in the cytoplasm are of great significance. Perhaps this is where the key to understanding diseases can be found.

*Global quantification of mammalian gene expression control
Björn Schwanhäusser1, Dorothea Busse1, Na Li1, Gunnar Dittmar1, Johannes Schuchhardt2, Jana Wolf1, Wei Chen1 & Matthias Selbach1

1Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, D-13092 Berlin, Germany. 2MicroDiscovery GmbH, Marienburger Str. 1, D-10405 Berlin, Germany.

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Member of the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/
http://www.mdc-berlin.de/en/bimsb/index.html

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>