Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Gene to Protein – New Insights of MDC/BIMBS Researchers

19.05.2011
How do genes control us? This fundamental question of life still remains elusive despite decades of research. Genes are blueprints for proteins, but it is the proteins that actually carry out vital functions in the body for maintaining life.
Diseases such as cancer are characterized by altered genes, but also by disturbed protein production. But how is protein production controlled? Researchers of the Max Delbrück Center (MDC), Germany, have now comprehensively quantified gene expression for the first time. According to their latest findings, control mainly occurs in the cytoplasm of the cell and not in the ‘high-security tract’ of the cell nucleus (Nature doi:10.1038/nature10098)*.

Corrected 2nd paragraph with additions

The results also highlight where gene expression can get out of control. The research was enabled by the close collaboration of a team led by the biologists Björn Schwanhäusser, Matthias Selbach, the systems biologist Jana Wolf and the biologist Wei Chen of the Berlin Institute for Medical Systems Biology (BIMSB) of the MDC (Nature doi:10.1038/nature10098)*.The Berlin Institute for Medical Systems Biology (BIMSB) was launched by the MDC in 2008, supported by start-up funding from the Federal Ministry of Education and Research (BMBF) and the Senate of Berlin. The focus of Medical Systems Biology is not on genes and their proteins as isolated components, but on their regulation and their interaction with each other and on their relevance for disease processes. Since its inception, the internationally renowned BIMSB has become a beacon in the Berlin research landscape. It works closely with other institutions in numerous research networks and participates in excellence clusters with the Berlin universities, collaborating in particular with Humboldt University and Charité – Universitätsmedizin Berlin and also with New York University.

Proteins are the major building blocks of life. “They control virtually all biological processes ranging from heartbeat and oxygen transport up to and including thinking,” Matthias Selbach explained. The blueprint for proteins is stored in the genes in the cell nucleus. The messenger RNA (mRNA) formed in the cell nucleus (transcription) brings a copy of the blueprint to the protein factories of the cell in the cytoplasm, to the ribosomes. There the information of the mRNAs is used for protein production (translation). The fundamental question was which of the two processes, i.e. transcription or translation, plays the dominant role in regulating cellular protein levels.

The starting point of the MDC researchers was to measure the turnover of cellular mRNAs and proteins and mRNA and protein levels. They used high-throughput technologies such as quantitative mass spectrometry and the latest sequencing techniques, which are available close by at the MDC / BIMSB. In total, they quantified proteins and mRNAs for more than 5,000 genes. By means of mathematical modeling, the researchers drew conclusions from the collected data about the control of protein levels. Intriguingly, they observed that cellular protein levels mainly depend on translation of mRNAs in the protein factories of the cytoplasm. “The ribosomes ultimately determine protein abundance. Some mRNAs are translated into only one protein per hour, others are translated 200 times,” Matthias Selbach said.

Cells work in an energy-efficient way
Furthermore, the researchers found that cells use their resources very efficiently. Most mRNAs and proteins of abundantly expressed housekeeping genes (these genes maintain the normal operations of the body) are very stable. In this way the cell saves valuable energy, because protein production consumes many resources. In contrast, proteins responsible for rapid signaling processes are typically unstable. Cells can therefore quickly adapt to changes in their surroundings. This may also explain why the decisive control step takes place in the cytoplasm and not in the nucleus. Since it constitutes the last step in the production chain, this allows cells to respond dynamically to their environment.

The researchers hope their results will also be relevant for diseases. "So far, this is purely basic research,” Matthias Selbach stressed. "But we also know that the production of proteins is disturbed in many diseases, for example cancer." Very little is known about where the process gets out of control. Until now, researchers focused almost exclusively on the nucleus to find answers to this question. The new findings, however, show that the protein factories in the cytoplasm are of great significance. Perhaps this is where the key to understanding diseases can be found.

*Global quantification of mammalian gene expression control
Björn Schwanhäusser1, Dorothea Busse1, Na Li1, Gunnar Dittmar1, Johannes Schuchhardt2, Jana Wolf1, Wei Chen1 & Matthias Selbach1

1Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, D-13092 Berlin, Germany. 2MicroDiscovery GmbH, Marienburger Str. 1, D-10405 Berlin, Germany.

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Member of the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/
http://www.mdc-berlin.de/en/bimsb/index.html

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>