Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene protects lung from damage due to pneumonia, sepsis, trauma, transplants

09.02.2011
Lung injury is a common cause of death among patients with pneumonia, sepsis or trauma and in those who have had lung transplants. The damage often occurs suddenly and can cause life-threatening breathing problems and rapid lung failure.

There are no effective treatments. Patients usually are put on ventilators to give their lungs a chance to heal, but there is little else doctors can do but wait and hope for the best.

Now, researchers at Washington University School of Medicine in St. Louis report they have identified a gene that limits damage to the lung during acute stress from illness, trauma or transplant. Defects in the bcl3 gene likely leave some patients more vulnerable to lung injury, they say.

The scientists also have demonstrated that this critical gene, which is active in bone marrow cells, can prevent lung injury in mice. The research is published in the Journal of Clinical Investigation.

The new discovery lays the groundwork for developing therapies to reduce complications of pneumonia, trauma and lung transplants, which affect many thousands of people annually in the United States.

"Acute lung injury is a very serious problem," says senior author Andrew Gelman, PhD, assistant professor of surgery and of pathology and immunology. "Patients' lungs fill with fluid, they can't breathe, and sadly there are no drugs available to reverse the condition."

The real culprits underlying acute lung injury are infection-fighting white blood cells called neutrophils. When the body makes too many neutrophils, however, they begin to attack healthy tissue, causing even more damage and sometimes even death.

"In mice, we found that the bcl3 gene essentially controls how many neutrophils the body produces under acute stress in the lung," Gelman says.

The same gene exists in people. Mutations in bcl3 have long been associated with the development of leukemia and lymphoma. Only recently has it been found to play a role in inflammation.

The research team stumbled onto bcl3 as part of an effort to determine why a newly transplanted lung often becomes injured in the hours after surgery. The damage occurs as the blood begins to flow through the organ again and increases the risk of rejection. In earlier studies, they had found that soon after a lung transplant, the new lung signals to the bone marrow to produce massive amounts of neutrophils.

"We wanted to understand how the lung is talking to the bone marrow and what is driving this extraordinary increase in neutrophils," Gelman says. "The lung tends to be unique in this manner; we don't see this with other organ transplants, such as the heart."

In a series of experiments in mice undergoing lung transplants, the researchers found that in response to acute stress in the lung, a cytokine called granulocyte colony stimulating factor (G-CSF) accumulates in the blood, which in turn stimulates the production of neutrophils in the bone marrow.

But there's a counterbalance built into the system. When G-CSF builds up in the blood, the bcl3 gene is activated in the bone marrow to begin shutting down neutrophil production.

When the scientists transplanted healthy mouse lungs into mice that lacked bcl3 in their bone marrow, things went haywire. Without the gene, neutrophil production went unchecked, and the mice developed acute lung injury.

The investigators measured four times as many neutrophils in the blood of mice that lacked bcl3 compared with normal mice. The bcl3 gene, they showed, acts like a master switch to control the effects of G-CSF on neutrophil production.

While neutrophils are the key offenders of acute lung injury, completely blocking them from entering the lung is not a practical treatment.

"You need enough neutrophils in the lung to fight infection or repair lung damage but when there are too many, they cause irreversible injury," Gelman says. "It's a delicate balancing act."

Instead, the investigators showed they could prevent post-transplant lung injury by blocking G-CSF in mice that lacked blc3 in their bone marrow.

"This reduced the number of neutrophils that entered the lung," Gelman explains. "Other inflammatory cytokines, including GM-CSF and IL-3, still produced neutrophils but not enough to cause acute lung injury."

The researchers also showed they could prevent acute lung injury in a mouse model of sepsis by blocking G-CSF in mice that lacked bcl3.

Interestingly, G-CSF is routinely given to cancer patients undergoing chemotherapy to help them fight infections.

"There's been a lot of effort to stimulate neutrophil production in cancer patients because chemotherapy kills cancer cells and prevents the production of white blood cells, including neutrophils," Gelman says. "But what we're saying is that under acute stress to the lung, the effect of G-CSF on neutrophil production needs to be limited but certainly not eliminated."

In follow-up studies, Gelman and his colleagues want to get a better handle on how mutations in the bcl3 gene affect a person's susceptibility to acute lung injury from an infection or a transplant, he says.

The research was funded by a grant from the National Heart, Lung, and Blood Institute.

Kreisel D, Sugimoto S, Tietjens J, Zhu J, Yamamoto S, Krupnick AS, Carmody RJ, Gelman AE. Bcl3 prevents acute inflammatory lung injury by restraining emergency granulopoiesis. Journal of Clinical Investigation. January 2011.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>