Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How One Gene Can Produce Two Proteins

26.05.2011
Small proteins of the ubiquitin family work as molecular switches and control many cellular functions.

Scientists at the Max Planck Institute of Biochemistry (MPIB) in Martinsried near Munich, Germany, now discovered that the protein Hub1 of this protein family has a big effect on the synthesis of proteins: Hub1 influences the way how cells translate the information that is encoded in the genes. It even allows that one gene provides the information for two proteins and thus leads to more proteins than there are genes. This mechanism could also affect the protein repertoire of humans and hence will possibly have numerous implications for health and disease. (Nature, May 25, 2011)

Each cell possesses a large number of proteins, which steer all life functions. Each protein takes on special tasks, but these can be altered through protein modifications. Particularly fascinating cases are modifications in which the proteins are modified by chemical attachment of small proteins that belong to the ubiquitin family. Ubiquitin, which was discovered in the 1970ies, is known to work as a label for degradation: proteins marked with ubiquitin are specifically recognized by the cellular shredder, the proteasome.

In the laboratory of Stefan Jentsch at the MPIB scientists identified and studied Hub1, an unusual member of the ubiquitin family. Although Hub1 has a similar structure, it functions completely different to ubiquitin and other members of this protein family. Shravan Kumar Mishra, a postdoc in the laboratory, found that Hub1 binds tightly, but not chemically linked, to the highly conserved protein Snu66. This protein is part of a cellular machine, the spliceosome, which, by a process known as “splicing”, cuts out segments of messenger RNAs (mRNAs) and pastes the remaining parts together. As mRNA molecules transport the genetic information that is stored in the genes of the chromosomes to cellular machines (ribosomes) that translate the information into proteins, splicing can significantly alter the repertoire of proteins in cells. Mishra and colleagues now discovered that binding of Hub1 to Snu66 changes the properties of this machine in a dramatic way: in the presence of Hub1 it can act on RNAs that are otherwise not spliced. In a few cases, Hub1-modified spliceosomes can even generate two different mRNAs from one single gene. In this process, which is called “alternative splicing”, one gene thus provides the information for two different proteins.

The Hub1-mediated mechanism that the Jentsch team identified may be the oldest evolved mechanism that leads to more proteins than there are genes. Mishra and co-workers found out that the mechanism they identified is conserved from single-cellular organisms like yeast to humans. As the newly discovered mechanism is expected to influence the production of a large range of proteins also in humans, the new findings will have numerous implications for human cells in health and disease.

Original Publication:
Mishra et al. (2011): Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing. Nature, May 25, 2011.
Contact:
Prof. Dr. Stefan Jentsch
Molecular Cell Biology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: jentsch@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de/jentsch
http://www.biochem.mpg.de

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>