Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How One Gene Can Produce Two Proteins

26.05.2011
Small proteins of the ubiquitin family work as molecular switches and control many cellular functions.

Scientists at the Max Planck Institute of Biochemistry (MPIB) in Martinsried near Munich, Germany, now discovered that the protein Hub1 of this protein family has a big effect on the synthesis of proteins: Hub1 influences the way how cells translate the information that is encoded in the genes. It even allows that one gene provides the information for two proteins and thus leads to more proteins than there are genes. This mechanism could also affect the protein repertoire of humans and hence will possibly have numerous implications for health and disease. (Nature, May 25, 2011)

Each cell possesses a large number of proteins, which steer all life functions. Each protein takes on special tasks, but these can be altered through protein modifications. Particularly fascinating cases are modifications in which the proteins are modified by chemical attachment of small proteins that belong to the ubiquitin family. Ubiquitin, which was discovered in the 1970ies, is known to work as a label for degradation: proteins marked with ubiquitin are specifically recognized by the cellular shredder, the proteasome.

In the laboratory of Stefan Jentsch at the MPIB scientists identified and studied Hub1, an unusual member of the ubiquitin family. Although Hub1 has a similar structure, it functions completely different to ubiquitin and other members of this protein family. Shravan Kumar Mishra, a postdoc in the laboratory, found that Hub1 binds tightly, but not chemically linked, to the highly conserved protein Snu66. This protein is part of a cellular machine, the spliceosome, which, by a process known as “splicing”, cuts out segments of messenger RNAs (mRNAs) and pastes the remaining parts together. As mRNA molecules transport the genetic information that is stored in the genes of the chromosomes to cellular machines (ribosomes) that translate the information into proteins, splicing can significantly alter the repertoire of proteins in cells. Mishra and colleagues now discovered that binding of Hub1 to Snu66 changes the properties of this machine in a dramatic way: in the presence of Hub1 it can act on RNAs that are otherwise not spliced. In a few cases, Hub1-modified spliceosomes can even generate two different mRNAs from one single gene. In this process, which is called “alternative splicing”, one gene thus provides the information for two different proteins.

The Hub1-mediated mechanism that the Jentsch team identified may be the oldest evolved mechanism that leads to more proteins than there are genes. Mishra and co-workers found out that the mechanism they identified is conserved from single-cellular organisms like yeast to humans. As the newly discovered mechanism is expected to influence the production of a large range of proteins also in humans, the new findings will have numerous implications for human cells in health and disease.

Original Publication:
Mishra et al. (2011): Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing. Nature, May 25, 2011.
Contact:
Prof. Dr. Stefan Jentsch
Molecular Cell Biology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: jentsch@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de/jentsch
http://www.biochem.mpg.de

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>