Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene predicts how brain responds to fatigue, human study shows

Imaging study suggests why some are resilient and others vulnerable to sleep deprivation

New imaging research in the June 24 issue of The Journal of Neuroscience helps explain why sleep deprivation affects some people more than others.

After staying awake all night, those who are genetically vulnerable to sleep loss showed reduced brain activity, while those who are genetically resilient showed expanded brain activity, the study found. The findings help explain individual differences in the ability to compensate for lack of sleep.

"The extent to which individuals are affected by sleep deprivation varies, with some crashing out and others holding up well after a night without sleep," said Michael Chee, MBBS, at the Duke–National University of Singapore Graduate Medical School, an expert on sleep deprivation who was not affiliated with the study. However, studying how the brain produces these behavioral differences is difficult: researchers usually do not know whether their study participants will be vulnerable to sleep deprivation until after a study is complete. Previous studies have shown conflicting results, perhaps because the study subjects differed widely in vulnerability to sleep deprivation.

In the current study, the researchers, led by Pierre Maquet, MD, at the University of Lìege in Belgium and Derk-Jan Dijk, PhD, at the University of Surrey in the United Kingdom, avoided this problem by selecting study participants based on their genes. Previous research showed that the PERIOD3 (PER3) gene predicts how people will respond to sleep deprivation. People carry either long or short variants of the gene. Those with the short PER3 variant are resilient to sleep loss — they perform well on cognitive tasks after sleep deprivation. However, those with the long PER3 variant are vulnerable — they show deficits in cognitive performance after sleep deprivation. Now the new study explains why.

The authors imaged study participants while they did a working memory task that requires attention and cognitive control — also called executive function. The researchers imaged each participant four times: the night before and the morning after a good night's sleep, and the night before and morning after a sleepless night.

They found that the resilient, short gene variant group compensated for sleep loss by "recruiting" extra brain structures. In addition to brain structures normally activated by the cognitive task, these participants showed increased activity in other frontal, temporal, and subcortical brain structures after a sleepless night.

In contrast, after a sleepless night, vulnerable participants, the long PER3 group, showed reduced activity in brain structures normally activated by the task. These participants also showed reduced brain activity in one brain structure — the right posterior inferior frontal gyrus — after a normal waking day. These data are consistent with previous research suggesting that people with the long gene variant perform better on executive tasks earlier, but not later, in the day.

"Our study uncovers some of the networks underlying individual differences in sleep loss vulnerability and shows for the first time how genetic differences in brain activity associate with cognitive performance and fatigue," said study author Maquet. "The data also provide a basis for the development of measures to counteract individual cognitive deficits associated with sleep loss," he said.

"This study and others like it could help in identifying those who may be at risk for performance decline in jobs where sleep deprivation is an integral feature, for example- all-night health care staff, senior decision makers, commercial aircraft pilots, and truck drivers. Such knowledge might also guide the development of more effective, possibly personalized countermeasures for at-risk people," said Chee, the expert unaffiliated with the study.

The Belgian Fonds de la Recherche Scientifique, Queen Elizabeth Medical Foundation, University of Lìege, Interuniversity Attraction Pole – Phase V, Wellcome Trust, and Biotechnology and Biological Sciences Research Council supported the research.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 38,000 basic scientists and clinicians who study the brain and nervous system. Maquet can be reached at

Todd Bentsen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>