Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene predicts how brain responds to fatigue, human study shows

26.06.2009
Imaging study suggests why some are resilient and others vulnerable to sleep deprivation

New imaging research in the June 24 issue of The Journal of Neuroscience helps explain why sleep deprivation affects some people more than others.

After staying awake all night, those who are genetically vulnerable to sleep loss showed reduced brain activity, while those who are genetically resilient showed expanded brain activity, the study found. The findings help explain individual differences in the ability to compensate for lack of sleep.

"The extent to which individuals are affected by sleep deprivation varies, with some crashing out and others holding up well after a night without sleep," said Michael Chee, MBBS, at the Duke–National University of Singapore Graduate Medical School, an expert on sleep deprivation who was not affiliated with the study. However, studying how the brain produces these behavioral differences is difficult: researchers usually do not know whether their study participants will be vulnerable to sleep deprivation until after a study is complete. Previous studies have shown conflicting results, perhaps because the study subjects differed widely in vulnerability to sleep deprivation.

In the current study, the researchers, led by Pierre Maquet, MD, at the University of Lìege in Belgium and Derk-Jan Dijk, PhD, at the University of Surrey in the United Kingdom, avoided this problem by selecting study participants based on their genes. Previous research showed that the PERIOD3 (PER3) gene predicts how people will respond to sleep deprivation. People carry either long or short variants of the gene. Those with the short PER3 variant are resilient to sleep loss — they perform well on cognitive tasks after sleep deprivation. However, those with the long PER3 variant are vulnerable — they show deficits in cognitive performance after sleep deprivation. Now the new study explains why.

The authors imaged study participants while they did a working memory task that requires attention and cognitive control — also called executive function. The researchers imaged each participant four times: the night before and the morning after a good night's sleep, and the night before and morning after a sleepless night.

They found that the resilient, short gene variant group compensated for sleep loss by "recruiting" extra brain structures. In addition to brain structures normally activated by the cognitive task, these participants showed increased activity in other frontal, temporal, and subcortical brain structures after a sleepless night.

In contrast, after a sleepless night, vulnerable participants, the long PER3 group, showed reduced activity in brain structures normally activated by the task. These participants also showed reduced brain activity in one brain structure — the right posterior inferior frontal gyrus — after a normal waking day. These data are consistent with previous research suggesting that people with the long gene variant perform better on executive tasks earlier, but not later, in the day.

"Our study uncovers some of the networks underlying individual differences in sleep loss vulnerability and shows for the first time how genetic differences in brain activity associate with cognitive performance and fatigue," said study author Maquet. "The data also provide a basis for the development of measures to counteract individual cognitive deficits associated with sleep loss," he said.

"This study and others like it could help in identifying those who may be at risk for performance decline in jobs where sleep deprivation is an integral feature, for example- all-night health care staff, senior decision makers, commercial aircraft pilots, and truck drivers. Such knowledge might also guide the development of more effective, possibly personalized countermeasures for at-risk people," said Chee, the expert unaffiliated with the study.

The Belgian Fonds de la Recherche Scientifique, Queen Elizabeth Medical Foundation, University of Lìege, Interuniversity Attraction Pole – Phase V, Wellcome Trust, and Biotechnology and Biological Sciences Research Council supported the research.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 38,000 basic scientists and clinicians who study the brain and nervous system. Maquet can be reached at pmaquet@ulg.ac.be.

Todd Bentsen | EurekAlert!
Further information:
http://www.sfn.org

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>