Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene predicts how brain responds to fatigue, human study shows

26.06.2009
Imaging study suggests why some are resilient and others vulnerable to sleep deprivation

New imaging research in the June 24 issue of The Journal of Neuroscience helps explain why sleep deprivation affects some people more than others.

After staying awake all night, those who are genetically vulnerable to sleep loss showed reduced brain activity, while those who are genetically resilient showed expanded brain activity, the study found. The findings help explain individual differences in the ability to compensate for lack of sleep.

"The extent to which individuals are affected by sleep deprivation varies, with some crashing out and others holding up well after a night without sleep," said Michael Chee, MBBS, at the Duke–National University of Singapore Graduate Medical School, an expert on sleep deprivation who was not affiliated with the study. However, studying how the brain produces these behavioral differences is difficult: researchers usually do not know whether their study participants will be vulnerable to sleep deprivation until after a study is complete. Previous studies have shown conflicting results, perhaps because the study subjects differed widely in vulnerability to sleep deprivation.

In the current study, the researchers, led by Pierre Maquet, MD, at the University of Lìege in Belgium and Derk-Jan Dijk, PhD, at the University of Surrey in the United Kingdom, avoided this problem by selecting study participants based on their genes. Previous research showed that the PERIOD3 (PER3) gene predicts how people will respond to sleep deprivation. People carry either long or short variants of the gene. Those with the short PER3 variant are resilient to sleep loss — they perform well on cognitive tasks after sleep deprivation. However, those with the long PER3 variant are vulnerable — they show deficits in cognitive performance after sleep deprivation. Now the new study explains why.

The authors imaged study participants while they did a working memory task that requires attention and cognitive control — also called executive function. The researchers imaged each participant four times: the night before and the morning after a good night's sleep, and the night before and morning after a sleepless night.

They found that the resilient, short gene variant group compensated for sleep loss by "recruiting" extra brain structures. In addition to brain structures normally activated by the cognitive task, these participants showed increased activity in other frontal, temporal, and subcortical brain structures after a sleepless night.

In contrast, after a sleepless night, vulnerable participants, the long PER3 group, showed reduced activity in brain structures normally activated by the task. These participants also showed reduced brain activity in one brain structure — the right posterior inferior frontal gyrus — after a normal waking day. These data are consistent with previous research suggesting that people with the long gene variant perform better on executive tasks earlier, but not later, in the day.

"Our study uncovers some of the networks underlying individual differences in sleep loss vulnerability and shows for the first time how genetic differences in brain activity associate with cognitive performance and fatigue," said study author Maquet. "The data also provide a basis for the development of measures to counteract individual cognitive deficits associated with sleep loss," he said.

"This study and others like it could help in identifying those who may be at risk for performance decline in jobs where sleep deprivation is an integral feature, for example- all-night health care staff, senior decision makers, commercial aircraft pilots, and truck drivers. Such knowledge might also guide the development of more effective, possibly personalized countermeasures for at-risk people," said Chee, the expert unaffiliated with the study.

The Belgian Fonds de la Recherche Scientifique, Queen Elizabeth Medical Foundation, University of Lìege, Interuniversity Attraction Pole – Phase V, Wellcome Trust, and Biotechnology and Biological Sciences Research Council supported the research.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 38,000 basic scientists and clinicians who study the brain and nervous system. Maquet can be reached at pmaquet@ulg.ac.be.

Todd Bentsen | EurekAlert!
Further information:
http://www.sfn.org

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>