Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel gene mutations associated with bile duct cancer

19.01.2012
Mass. General Hospital Cancer Center findings could lead to targeted treatment for deadly tumor

Investigators at the Massachusetts General Hospital (MGH) Cancer Center have identified a new genetic signature associated with bile duct cancer, a usually deadly tumor for which effective treatment currently is limited.

Their report, which has been published online in The Oncologist, finds that growth-enhancing mutations in two related genes may account for nearly a quarter of bile duct tumors arising within the liver, presenting the possibility that drugs targeting this mutation could represent a new strategy to control tumor growth.

"Patients with bile duct cancer have a generally poor prognosis. Most of them are diagnosed with advanced or metastatic disease, so surgical resection is not feasible," says co-senior author Andrew Zhu, MD, PhD, director of Liver Cancer Research at the MGH Cancer Center. "Identifying this new and relatively common mutation in intrahepatic bile duct cancer may have significant implications for the diagnosis, prognosis and therapy of patients whose tumors harbor this mutation."

Cancers of the gallbladder and bile duct are diagnosed in 12,000 patients in the U.S. each year, the authors note; but only 10 percent are discovered early enough to allow successful surgical treatment. Chemotherapy is modestly effective, leading to an average survival time of less than one year.

The MGH Translational Research Laboratory was jointly established by the MGH Department of Pathology and the MGH Cancer Center to screen patient tumor samples for mutations known to drive tumor growth, identifying those that may be treatable with targeted therapies. As part of this project, the MGH team screened samples from 287 patients with gastrointestinal tumors for 130 known cancer-associated mutations and were surprised to find that 3 out of 12 biliary tract cancer tumors had mutations in a gene called IDH1. To confirm this finding, they ran a more detailed screen in additional samples, for a total of 62 bile duct tumors and 25 gallbladder tumors. Mutations in IDH1 were found in 13 percent of all bile duct tumors and in 23 percent of those located within the liver itself. Less commonly, mutations were identified in a similar gene IDH2.

"Mutations in these genes are rare examples of abnormalities that profoundly affect the normal function of a metabolic enzyme," says lead author Darrell Borger, PhD, co-director of the Translational Research Laboratory. "Our co-investigators previously found that, in other types of cancer, mutations in these genes cause overproduction and dramatic accumulation of the metabolite 2-hydroxyglutarate. How this causes tumor development is being actively investigated, and it is now emerging that 2-hydroxyglutarate can disrupt the activity of a family of proteins important in signal transduction and regulation of gene expression."

Although no approved drugs are currently available that target IDH mutations, extensive efforts are underway to develop such drugs, Zhu notes. "Identifying these mutations in bile duct cancer raises many questions, including whether mutational status can distinguish various types of bile duct tumors and help predict prognosis. Also of interest is determining whether high blood levels of 2-hydroxyglutarate could serve as a biomarker for IDH1/2 status, which could provide a minimally invasive way to monitor the effects of new IDH inhibitors that may become available," he says. Zhu is an associate professor, and Borger an instructor in Medicine at Harvard Medical School.

John Iafrate, MD, PhD, director of the Center for Integrated Diagnostics in MGH Pathology, is corresponding and co-senior author of the Oncologist paper. Additional co-authors are Kenneth Tanabe, MD, Kenneth Fan, Hector Lopez, Marek Ancukiewicz, PhD, Hannah Liebman, Eunice Kwak, MD, PhD, Jeffrey Clark, MD, David Ryan, MD, Vikram Deshpande, MBBS, Dora Dias-Santagata, PhD, and Leif Ellisen, MD, PhD, all of the MGH Cancer Center; Valeria Fantin, PhD, Kimberly Straley and David Schenkein, MD, Agios Pharmaceuticals; and Aram Hezel, MD, University of Rochester.

Massachusetts General Hospital (www.massgeneral.org), founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Katie Marquedant | EurekAlert!
Further information:
http://www.massgeneral.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>