Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Mutation in Worms Key to Alcohol Tolerance

23.10.2008
Scientists at the University of Liverpool have found that a genetic mutation in worms could further understanding of alcoholism in humans.

The work follows a study carried out by Oregon Health and Science University, which suggested a link between a gene mutation in mice and tolerance to alcohol. Researchers at Liverpool have investigated this in worms, looking specifically at the role the gene plays in communication between cells in the nervous system.

This gene specifies the ways in which amino acids arrange themselves into a protein called UNC-18 – or Munc18-1 in humans, an essential component of the nervous system. Researchers found that a naturally occurring change in this gene can result in a change in the nature of one of the amino acids, which then alters communication between cells in the nervous system. As a result of these changes the nervous system becomes less sensitive to the effects of alcohol, allowing the body to consume more.

Professor Bob Burgoyne, Head of the University’s School of Biomedical Sciences, explains: “Alcohol consumption can affect the nervous system in a number of ways. Low concentrations of alcohol can make the body more alert, but high concentrations can also reduce its activity, resulting in motor dysfunction and a lack of coordination. Some people, however, are more susceptible to these effects than others, but it has never been fully understood why this is.

“We used the nematode worm as a model to look at the role genes play in alcohol tolerance because all of the worm’s genome has been characterised and we can therefore identify its genes easily. The gene we looked at corresponds to a gene in humans that performs the same function in the nervous system. Mutations in genes can occur naturally without any known cause and will persist if they are not particularly harmful.”

Dr Jeff Barclay, co-author of the research, added: “We investigated alterations in amino acids in two genetically identical worms. One carried a mutation that was exactly the same as the genetic change our American colleagues found in mice and the other carried a different change within the same gene. Both these mutations altered the way communicate occurs between cells in the nervous system. The mutations reduce the negative behavioural effects of alcohol and so more can be consumed before the body starts to react badly to it.

“Now that we have shown the link between the gene and alcohol tolerance in worms, it is possible to search the human gene to see if there are any spontaneous changes that could help identify individuals with a predisposition to alcoholism.”

The research is published in Molecular Biology of the Cell.

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk/newsroom

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

More genes are active in high-performance maize

19.01.2018 | Life Sciences

How plants see light

19.01.2018 | Life Sciences

Artificial agent designs quantum experiments

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>